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ABSTRACT

The linearized equations describing the propagation
ef the normal modes in a plasma filled waveguide at micro-
wave frequencies and in the presence of an axial constant
magnetiec fileld are derived from moments of the Boltzmann
equation. Collisions are retained. For two cases where the
plasma is assumed to be drifting but uwhiform or stationary
but non-uniform in the transverse plane it is possible
to completely solve for the fields by solving a set of
coupled equations for the axial electric and magnetic
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fields and the pressure. If
stationary and uniform these reduce to a set of coupled
Helmholtz equations. Solutions for this case are considered
in detail. The equations can be simplified considerably
and cas® into a form very similar to those used to des-
cribe wave propagation in & ¢old plasma. Solutions are

obtained by employing an iterative technique.
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DEFINITION OF SYMBOLS

The following is a tabulation of the symbols used
in this. MKS units are used throughout.

w - radian excitation frequency

C - speed of light

12

e, = permittivity of free space = 8.854 x 107"° farad/m.

M, - permeability of free space = Ur x 10~7 henries/m.
u = adiabatic electron sound speed

m - mass of the electron = 9.107 x 10731 Kg.

q - charge of the electron = 1.602 x 10~17 coul.

B_ - magnitude of externally applied magnetic field

b
‘

gross electron background number density
N o2 172
oq
wy = ( < m) - electron plasma frequency
o
qB

wp = -ﬁg ~ electron cyclotron frequency

Wop = hybrid-E mode cutoff frequency
v - collision frequency for momentum transfer

T - Kelvin temperature

[

zoz-%
g = mé/w
L, = v/w
ko = u/C
ho = w/u

ix



B - axial propagation wave number

Kv = l-jzv
102
K = 1- ——
o K,
2B2
K, 2 1= —
B K 2
v
2
L
- 2 B
S VA e
2 - _2" e ‘aA
k 2z . g2
c o}
2 _ 2 2
kp = ho KH - B KB
- Y ->
H =/"-2 g
normalized co actual
uN q
P=—34
3 . _w_ /% 3
actual uNoq u, normalized

(en,wm) - scalar product of two vectors, e

n and w

m
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CHAPTER I

INTRODUCTION

In recent years the toplc of wave propagation in a gaseous
plasma has been studied extensively. Most of the early work in this
area was concerned with determining the dispersion characteristics
of waves in an unbounded plasma. More recently, a number of bounded
plasma problems have been investigated. In this work we shall be
concerned only with the high frequency behavior of cylindrically
bounded plasmas. The plasma will generally be anisotropic since it

will be assumed that an axial steady magnetic field is applied.

Before embarking on any plasma problem it is necessary choose a
model to describe the motion of the plasma constituents(generally
ions, electrons and neutrals). The most satisfactory derivation of
all the macroscopic plasma models is obtained by computing the

moments of the Boltzmann equation. [1-2]

Generally, this procedure
can be carried out for each species of the plasma, the resulting

equations being the so called n-fluid equations.

The process of computing moments of Boltzmann's equation ylelds
an open set of equations since each higher moment introduces
additional unknown quantities. The procedure must therefore be

terminated or truncated in some manner. Two possible methods of



truncation yleld the cold plasma and warm plasma models.

If only the first two moments of the Boltzmann equation are
retained the unknown pressure terms must be dropped and ane obtains
the cold plasme model. In high frequency problems the motion of the
ions and neutrals is usually neglected and the ions are considered
to provide simply a neutralizing stationary background for the
electrans. This model is known as the Lorentz gas model. Since the
term fram the collision integrel is still present it is genereally
simplified by either neglecting collisions altogether or by assuming
the effect of collisions can be accounted for by introducing a |
collision frequency.

The collisionless Lorentz model has been used to study several
classes of bounded problems. These include wave propagation on
bounded plasma cylinders[?’], analysis of plasma beam arnplifier-s[)"'6j
and the investigation of wave propagation in plasma filled wave-
guide [7"13). mis model has the advantage of being the simplest
possible plasma model and hence the easiest to analyze. However,
neglecting collisions can be a very poor assumption, particularly
at resonsnces where the particles may move very rapidly. In
particular, dispersion curves may be obtalned from the collisionless
equations that have very sharp resonances and interesting behavi~or,
but ypon the inclusion cof collisians will be so highly attenuated
as to become meaningless in an experiment. For this reason we shall
retain collisions in all our work.




Another problem arises when the cold plasma model, with or
without collisions, 1s used in a bounded problem. It has been shown

by Sancerflu]

» and is later shown in this work, that the normal
component of fluid velocity does not in general vanish at the walls.
There is no way around this problem within the bounds of the cold
plasma model and to eliminate this unphysical result we must consider

the more complicated warm plasma equations.

To obtain the warm plasma equations three moments of the
Boltzmann equation are retained. To close the equations the heat

flow term, off-diagonal pressure terms and collision integral term

+

are

+~ arn 1 P Tafd i+ Y S S . S
set to zero. We are left with the conservation of mass,

{

momentum and energy equations. The linearized form of these
equations, together with Maxwell's equations, provide a vlosed set
ed wave propagation. In this work
we shall consider an electron gas model since we will be concerned
with high frequencies. The more general and more complicated
n-fluid model[15] has been used to study low frequency waveguide

(or magneto-hydrodynamic waveguide) propagation[16].

The warm electron gas model has been used to study a variety of
boundary value problems. Propagation along an open isotropic plasma
cylinder has been studied, experimentally and fheoretically, by
KolettisEl?J. A study of the inhomogeneous (i.e., including sources)
[14]

waveguide equations has been made by Sancer In this work

Sancer considers the mathematical aspects of the linearized equations



and discusses mathematically appropriate boundary conditions and
possible methods of solution[lg]° It is found that the warm plasma
model has mathematically acceptable solutions for a number of
boundary conditions on the velocify. We shall use the condition
that the normal component of velocity vanish at the plasma boundary.
Other possible physically acceptable boundary conditions have been

discussed by Wait[21]. A formal method of solution similar to that

proposed by Sancer has been outlined by Chen and Cheng[22].

This
method is similar to the method used by Wang and HopsonElZ] to
analyze the cold collisionless bounded problem. It will be followed
in Chapter 2 where we shall obtain solutions for the cold collisional

model.

Solutions for wave propagation in warm, collisional anisotropic
plasma have not appeared in the literature. If one attempts to
solve the problem by employing the formal methods suggested by
Sancer or Chen and Cheng it quickly becomes clear that a numter of
extremely difficult coupled transcendental equations must be solved.
Besides presenting formidable numerical problems, it is felt that
the basic physics is quite obscured by this approach. We shall
avoid the method completely and derive a set of simpler equations
by considering the coupling of the various waves and the
simplifications which are evident from a coupled mode approach to
the problem. These simpler equations are derived in Chapter 6 and

solutions are obtained in Chapter 7 and 8.




Although the main goal of this work has been to exhibit
solutions to the stationary, uniform plasma problem, it is of
interest to see how the equations change when drifts or non-
uniformities are present. In Chapter 3 and 4 the basic equation

for these cases are derived.




CHAPTER II

SOLUTIONS FOR THE COLD, BOUNDED PLASMA

2.0 Introduction

Before considering the warm plasma we will consider the
solutions for wave propagation in a wavegulde filled with cold
anisotropic plasma. It was pointed out in the introduction that
this model is not adequate for bounded problems since we cannot
impose any boundary condition on the normal component of the electron
velocity. However, the equations for this model are considerably
simpler than the more accurate warm plasma equations and it is of
interest to compare the results of the two models. Also, we shall
later (Chapter 6) derive a reduced approximate set of equations for
the warm plasma equations. It will be seen that these equations are

very similar to the cold plasma equations.

The method of solution employed here is very similar to that

[12]

used by Wang and Hopson However, we shall include collisions

in our model.

The starting equations for both models will be obtained as
follcws. We will consider only the small signal, linearized momert
equations and Maxwell equations with no applied sources. It is
assumed that the plasma is contained in a cylindrical waveguide and

that a steady axlally directed magnetic field is applied. In this
; .




case the fileld equations can be broken into equations having only
transverse or axial components. From these equations it is possible
to show that all the transverse field quantities and the axial
velocity can be found from the axial components of the electric and
magnetic fields. These axial fields thus serve as a set of poten-
tials for the problem and are detefmined by solving a set of coupled

Helmhdltz equations. This procedure will now be illustrated.

2.1 The Linearized Cold Plasma Equations

The equations used in this analysis are the standard linearized
cold plasma equations with the assumed wave variation ej<9t"sz),

M. K. S. units are used throughout and the

4]

-

vantity ad (wt-82)
y e

dropped for convenience.

To simplify the equations we will normalize the magnetic field
to have the dimensions of electric field.

fi /5—9- it (2.1)

actual field = Hy

Also define the following quantities:

2
Noq )%
o eom

; the electron plasma frequency (2.2a)

where N0 1s the steady background electron number density, q 1is

the charge of an electron and m is the electron mass.

wg = —= ; the electron cyclotron frequency (2.2b)




where BO is the magnitude of the applied magnetic fiteld.

W
2, = ;9 (c)
B 2 @ (2.2)
2v = i- (e)

where v 1s the effectlive collision frequency for momentum transfer.

k =% (2.2f)

where c¢ 1s the speed of light in vacuum.

All vector quantities are separated into axial and transverse

components, i.e.,

& J(wt-pz)

E(x,y)* e (x,y) le

<
|

= Vt-:j Baz
" ='E + E , etce.
z
The resulting set of equations is
(a)

~ o A -> _ >
axv ez+ jgax e = jkoh (b)
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A XV h + §ga x B = -Jk&-Ng /23 (@)
azx tz JBaZx J oS ol € Ve
V,* &= + ng/ (e)
£ = jsez nqg/e, e

s
Vee ho=jgh, (£)

(2.3)

. o s -
Jun + NV v - jaN v, =0 (g)
N . > N e >
Jm(l—le)V = q/m{e + VX §O} (h)
Jw(l-le)vZ =(a/m)e, : (1)

As mentioned, to separate the equations in the above form it is

necessary to assume §6= Boéz « A method of solving (2.3) will now

be discussed.

2.2 The Potential Equations

We now will show that a set of coupled equations can be found
and solved for the axial fields e, and hZ . It is then shown

that all other quantities can be found from these quantities.

To obtain the equation for e, operate on (2.3b) with ézx
and then with V. and use (2.3¢) and (2.3¢) to eliminate v, x &
and vt- ¢ to obtain

22

€
0

(Vo k2(1 - -8, = -y £ (2.4a)
AV]

where we have defined
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Kv =1 - jkv

Operate on (2.3d) with ézx , then with v ° and use (2.3a)

xe and V,' R to obtain

and (2.3f) to eliminate vt t

S I - N /Yo +
{(Vg+ k-8t = Ng v/ —a v

->
XV (2.4b)
0 o t

Equation (2.4) can be expressed entirely in terms of e, and
hZ if n and vtx Vv can be expressed in terms of these quantities.
It is easily seen that this can be done by writing a set of equations

including (2.3e), (2.3g), V,x (2.3h) and Vt'(2.3h) as follows.

[ 1 /e, O o | v - @ Jge,
0 Jw/NO 1 0 n _ 55%:-62
o o w oam || wd || kg
- b,
-a/m 0 JuK,  -ug éz-vtx$ 0
(2.5)

Equation (2.5) has non-trivial solutions only if the

determinant of the coefficients is zero. But

w22 2. 2
A NO [ w K W Kv wBI (2.6)

If collisions were absent, Kv =1, and A could be zero.

With collisions present A will generally never vanish and solutions
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to (2.5) always exist.

We can now solve (2.5) for n and éz-vtx vV and substitute

the result into (2.4) to obtain;

2 2

‘ 2 B 2
{V + k2Kp B (1+ == B —=lle, = K;E (a)

KeKS v

1% Pl teK
o2+ ki[Kp-— = 21-¢°)n_ = - PB%'p e, (b)

KK v
We have defined several quantities which w

throughout this work.

2
A
KD =1 - Kg (a)
* v
2
KH =K - 25 - ;E (b)
v

Solutions to (2.7) are considered shortly.

for the other field quantities will be presented.

2.3 Equations for the Transverse Fields

(2.7)

(2.8)

First, the equations

The equations for the transverse fields are obtained by

straightforward, but rather tedious manipulation of (2.3). Only the

results are given.

Define the following quantities
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2 _ .2 2
kp:kOKp-B (a)
(2.9)
2 _ .2 2
kc = ko - B (b)

The transverse electric, magnetic and velocity fields are given

in terms of the potentials by

a2 2 22 2, 2,4 2.3
{kp- 2Bkc}e = —J3(kp—2Bkc)vteZ+szokoeazxvtez+szokovthz
2 2.2\~
+ jko(kp-lBkc)aszch (a)
a2 0 2 2, 22\
- 25k R --JLBR.OB?](OVteZ-jkO(kap K2 XV, e
(2.10)
e 1.2 0202 2,2, 2
—JB(kp—ZBkc)Vthz+8k0202BaZXVthz (b)
JK . a q .
> 1 v > B= >
v, = . 5 ng { ——€ - ——aX e} (e)
5= By
The axlal velocity is given simply by
-quz
v, = o (2.11;

\Y

It has been pointed out several times that it is not possible
LG SaLlsiy a boundary condition on v using the cold plasma model.
This point is clearly illustrated by considering (2.10c). If we

consider the plasma to be contained in a waveguide having perfectly
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conducting walls and apply the boundary conditions Etangential =

0
at the walls, then the normal component of e will generally not
be zero. From (2.10c) it is seen that the normal component of

velocity will also not be zero and is determined by g .

Another consequence of using the cold plasma model is the
omission of a class of acoustic modes  which may be of interest: Of
course, every assumption that is made in assuming immobile ions and
neutrals, no heat transfer, etc., introduces approximations into the
equations. The important point is that neglecting these terms may
not appreciably effect the dispersion characteristics of the modes.
Solutions to the cold plasma equations are sought now so that we
may later compare the dispersion curves with those obtained from the

warm plasma equations.

2.4 Solutions for a Circular Cylindrical Guide

Detailed solutions to (2.7) are now sought where the waveguide
geometry is shown in Fig. 8.1 and the analysis is restricted to
determining B for the lowest order modes. The analysis proceeds
as follows. First, a transformation will be found which diagonalizes
the coupled differential equations, (2.7). Then the boundary

conditions ezlc = EHE' = 0 are applied and a transcendental

c
equation from which the eigenvalues are derived is found. Solving
the transcendental equation numerically gives the dispersion

relation and eigenvalues.
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Define the following coefficients appearing in 2.7 by

L 22 2
b 2=k 2k - 8%+ 22 (a)
11 o 'p W 2
¥ %
2
£ “K
b2 =k 21 - SR )- g (b)
22 (o) KH
(2.12)
_ 3 2 k8
byp = ————%° ()
b21 = - bl?KP (d)
The coupled Helmholtz equations are now written
e b2 b e
2 z 11 12 z
v,°C )+ [ ] ( ) =[0] (2.13)
ty b b, 2 h
A 21 22 pA
In matrix notation (2.13) can be written
e
2 z
[vt +B] ( )=0 (2.14)
h
Z

Now we construct a matrix M, such that M'lBM is a diagonal ma-
trix, where M_l is the inverse of M. Techniques for diagonalizing
non-Hermitian matrices are discussed in Friedman, Ref. 23, and will

not be elaborated on here.
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To construct M we must first solve for the eigenvalues of B.

The eigenvalues, Az, must satisfy the equation

2 2
by -2 byo
=0 (2.15)
2 2
by by - A
Expanding (2.15) and solving for G gives
2. 2. 4 2. 2.2
2 (bll +b22 ) Z {(b11 -b,, ) + “blzbzl}
bl

. .

Note that the eigenvalues cannot be determined explicitly from (2.16)
since the bij contain 8. To find the eigenvalues and associated val-
ues of B we must impose the boundary conditions. We can assume that
the values of A can be found and formally proceed to find 8. As
shown in Friedman, the columns of M are the eigenvectors associated
with .2,
i
There are alternate ways to solve for the eigenvectors, but the

one that must be used in practice should awoid any numerical difficul-

orb should

ties caused by division by zero if, for instance, b12 21

become zero. An appropriate form for M is
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1 m12
M= (2.17a)
m21 1
Doy byo
where My = — 373 5 Mp = —73 3 (2.17b)
Do —Ay by —ho

The original fields are related to a set of new
field quantities, Uy s by

e

u
(%) = m(h (2.18a)

Z 2

where Uy satisfy the diagonalized equation

2 2

{Vt Ay }ui = 0 (2.18p)

Now specialize the problem to cylindrical geometry
and consider solutions. This geometry is later used
when the warm plasma problem is analyzed and it will be
of interest to compare the results obtained from the two
models. The analysis is restricted to consideration of
modes having no azimuthal variations.

In this case (2.18b) becomes

du
d i 2 )
ar T ap tripyy =0 (2.19)
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The only physically allowable solution of (2.19) is

a zeroth order Bessel function
uy = AiJo(Air) (2.20)

Note that Ai is not yet specified since no boundary
conditions have yet been applied. The applicable
boundary conditions on uy must be derived from the
conditions e, = ahz/ar = 0 at r = a, where a is the
waveguide radius. Using (2.18a) to relate uy to e, and

hZ and applying the boundary conditions gives;

Ay
<A2> = [0] (2.21)

Non-trivial solutions to (2.21) exist only if the

Jo(xla) mlzJo(Aza)
-mzllel(Ala) —Ale(Aza)

—_

determinant of the coefficients vanishes. This condition

yields the equation

A2JO(Ala)Jl(x2a)-Alml2m21Jo(Aza)Jl(Ala) =0 (2.22)

Note that Xi is a function of B since B is con-
tained in (2.16). Thus to obtain the dispersion relations
and the A's it is necessary to solve (2.16) simultaneously

with (2.21). Obtaining solutions to these equations is
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not a simple task. The numerical methods used will be discussed
briefly below and then the results of the computations are presented.

When collisions are included in the cold plasma model, as they
have been here, the parameters in (2.16) and (2.22) will in general
be complex and the equations can not be solved graphically. To solve
these equations Newton's iterative procedure, with the equations writ-
ten as functions of the complex variable B8, has been employed[zq].

To use this method it is usually necessary to have a good approximate
starting value to begin the iteration. At very high frequency the
coupling becomes very small and the iteration can be started.

A computer program was written to find the dispersion relation
and eigenvalues for different values of the plasma parameters, Wy and
wp- The solutions were divided into two classes called hybrid-E and
hybrid-H modes. The term hybrid signifies that the modes are not pure
E or H modes and the E or H nomenclature indicates that the modes re-
duce to these pure modes in the high frequency limit. Dispersicn re-
lations for some choices of parameters are shown in Figures 2.7 -2.5.
The frequency (normalized by wo = /woz + Az, where o, is derived in

the next section) and the parameters are chosen to
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coincide with those used in Chapter 8 to display the warm-plasma
dispersion relation so that a comparison of the results from the two

models may be made.

2.5 Cutoffs, Resonances and Limiting Values for B

With the dispersion curves available it is now of interest to
try to explain some of their characteristics in some limiting cases.
Since strict cut-off and resonance points do not occur when B is
complex (i.e., when collisions are present) we shall assume that v

is zero in the following derivations.

A. The high frequency limit
When w >> w, OF Wy, zo and Lp both approach zero
and Ky, Kp and K, approach unity. Thus, at high fre-

quencies the dispersion relation approaches that of

the empty waveguide.

2
B

coupling terms in (2.7) approach zero. The equa-

In this limit K; + - 45" and the right hand

tion for hz, (2.7b), reduces to

2 2 2y ,
{v," +k, -8, =0 (2.23)
This is just the equation satisfied by the H modes

in an empty waveguide. The behavior of B shown in Fig.

2.5 has exactly this behavior.
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Equation (2.7a) is changed from that of the empty wave-
guide E modes and exhibits the behavior shown in Fig. 2.1.
This is shown as follows.

In the limit of high cyclotron frequency the quantity
multiplying B in (2.7a) becomes

¥ * "022'B2 (-2'82 * j"02"'}32) 2
+ =1-2 (2.24)
KH 1 2 o
B
Equation (2.7a) thus becomes
2 2 2 -
{Vt + Kp(ko - B )}ez =0 (2.25)
This is an eigenvalue equation and 82 is given in the

usual way by

B = "4 2. AZ/KP (2.26)

@]

where A% is the eigenvalue of (2.25). At the plasma fre-
quency B has a pole since Kp = 0. Thus 82 + - » for

- + 2 .
w o= W and B "wforw-wo.

Cut-off and Resonance Frequencies

Additional information about the dispersion curves at
particular points can be obtained by writing (2.15) explicit-
ly in terms of B. To facilitate this multiply (2.15) by
KH2 to eliminate division by zero where Ky equals zero and

define
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_ 2 2 -
Cip = (kK =2")Ky Cio = Kybyo/8
- 2 2 2,
021 = KHb21/8 Cos k, [K KH ] -2 Ky

Expanding (2.15) in terms of the above
quantities gives

2 2

2 2
H(K e )8 - B [KH 11+(KH+£ )C - C

12211

+ C4Cpy = 0 (2.27)

Cut-off frequencies occur when B = 0. But
this 1s possible only if 011022 = 0. Note that
C11 and 022 contain A, but when B 1s zero equations
(2.27) decouple and i can easily be found. Setting
each quantity equal to zero gives the possible

cut-off frequencies. Setting C to zero and

11
solving for w glves

(2.28)

This is the cut-off frequency that was used to
normalize the frequency in the preceeding curves,
The other roots of (2.27) with 8 = 0 are obtained

from

Q
it
o

22 (2.29)
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Setting 022 to zero gives an equation for two
values of the cutoff frequency. Since this
expression is quite complicated and cannot be ex-
pressed simply it will only be said that the cutoff
frequencies obtained from setting 022 to zero are
functions of the cyclotron frequency as well as
the plasma frequency and that the cutoff frequencies
increase with increasing wpe This increase of the
cutoff frequency is noticed in Figures 2.4 and 2.5.

Finally, it is noted that, when g = 0, C..C
is zero 1if KH is zerc. However,
zero before B is set to zero it is found that all
terms in equation (2.27) are identically zero and
one is left with the meaningless equation 0 = 0.
The resonant conditions are found from equation

(2.27) by dividing the equation by B“, defining a new

quantity a« = 1/8 and setting a to zero. Thus resonances

can occur when

2, 2

2 2
(KH+10 257) = (1-24 )(1-20 )

= 0 (2.30)
Possible resonances then occur when the frequency
equals either the plasma or cyclotron frequency. Reso-
nant behavior is seen from the dispersion curves to
occur for both modes at the cyclotron frequency, but at

the plasma frequency only for the hybrid E mode.
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One other case is of interest. It was stated pre-

viously that if K, = 0 then (2.27) becomes an identity.

H
To investigate this case further consider equation (2.5)

and (2.6). Note that the condition K, = 0 is just the

H
condition that the determinant of the coefficients, as
expressed by (2.6) with Kv = 1, vanish. To prevent the
solution from blowing up it 1s necessary that the right-
hand-side of (2.5) vanish. This can occur if h, is zero
and if either B8 or e, is zero. If B8 vanishes we have a
cutoff condition and (2.4a) has a non-zero solution for
e, - This cutoff condition is evident in the dispersion
curves shown in Figures 2.1-2.3. If B is not zero then
both axial fields must vanish. However, no cut-off
condition is evident.

The cut-off and resonant points for the collisicnless
cold plasma have now to be found. For the hybrid-E
modes cutoffs occur when o = /w02+1202 or where K, = 0.

H
Resonances occur when w = w, OF wg. For the hybrid-H

B
modes cutoffs occur when 022, as given by (2.29), is
zero and resonances occur when w = wp-
With the cut-off and resonant points of a particular
mode known it is a relatively simple task to sketch the

form of the dispersion curves. PFor instance a sketch of

the dispersion curve shown in ﬁigo 2.2 is shown below.
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It is helpful to have this knowledge since it enables
us to check the reasonableness of results obtained by

the computer Note that Fig. 2.6 is a plot of 82 VS, wo.

' L
A 70 K
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-\ Wy

g
a)a I a)c E )
| /"‘)CE

|
|
[
|
|
|
Q Wy, |
i
|
i |

i '
| !

Fig. 2.6 Sketch of the Form of the Dispersion Curve
with Normalized Values wg = 0.6 and wy = 0.4,
The frequeney is normalized with respect to

mCE .

Finally, it should be pointed out that the preceeding
analysis of the cold plasma model will be of considerable
value later when the more complicated warm-plasma model
is tested. It is shown in Chapter 6 that the warm plasma
equation can be expressed in a form which is very close
to the equations used here, if the analysis is restricted
to consideration of the hybrid E and H modes. The
behavior of the dispersion curves should thus be expected
to exhibit a behavior which is similar to curves obtained

for the cold plasma model.



CHAPTER III

THE POTENTIAL, EQUATIONS FOR A WARM, ANISOTROPIC DRIFTING PLASMA

3.0 Introduction

In the last chapter it was seen that solutions to the cold
plasma problem could be obtained entirely in terms of the axial field
quantities. Similarly, for the warm, uniform, stationary plasma
Sancer has shown [ 14 ] that solutions can be obtained by considering
the axial electric and magnetic field and the pressure to be the
potentials for the problem. Early in the study of this problem it
occurred that such a treatment might also be possible for more
general drifting and non-uniform plasmas. This is indeed the case
and the potential equations for these two cases will be presented
in this and the next chapter. The equations are presented for
reference and no attempt will be made to solve the involved equations

which will be derived.

In this chapter we consider only the linearized uniform

drifting plasma. The non-linear d.c. equations are not considered.

3.1 The Basic Equations

The equations used to describe the plasma are Maxwell's equa-
tions, the equations for conservation of mass and momentum as

derived from the Boltzmann equation assuming a diagonal pressure

30
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term and an effective collision frequency fer transfer of momentum
and the adlabatic equation of state to truncate the maments of the
Boltzmann equation., Using M.K.S. units these beceme

in;*s-uoggﬁ- (a)

Vxﬁaeé-g%+3 (b)v

(3.1)
v-R=o0 (¢)
v e/ (a) |
il'nN\+ Yol Y\ N A
it-\n 7 \bi ri b » \N-J

nN{%%- +@ 0% =N E+ T x Bo} -7 -Nm¥ (D)
PN~Y = const. (&)

It 1s assumed that the frequency is sufficiently high that the
motion of heavy particles can be neglected. Ions are assumed to
provide a statlonary neutralizing background for the electrons.

'v’ »m, N and P are the electron fluid velocity, mass, gross
number density and pressure respectively. The other symbols are the
standard symbols used in Maxwell's equations. ﬁo i1s a static
extermally applied magnetic fileld and in this work 1s assumed to be
oriented along the axis of the cylindrical waveguide.
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3.2 The Nomalized, Linearized Equations

The equations will now be linearized by assuming that the fluid

field is composed of large static terms plus small time and space

Y

varying terms. ",
V=V (x,y)ed (wE-62) (a)

(3.2)
N =N_+ n(x,y)ej‘(mt-sz) (b)

P=P+ p(x,y)e‘j(“’t_BZ) (o)

£ and il are assumed to be small signal terms varying as

ej(wt_Bz) . The current 3 is assumed to be due only to motion of

the plasma electrons.,
> -
J=aW ' (3.3)

The linearized a.c. equations are thus

vxE= --;]t.uuz77 (a)
vxH-= jweof + q(NOV"" l’lvo) (b) (3.14)
vell=0 " (e)
v°oF-= nq/e:u%‘f o (@)
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Jun + V ° {nﬁo+ No"x;'} =0 (e)
JuN '+ (N T -0)V' = %Nog + LN V'x B+ nV x B}
-2 Nov$'-nvifo (£)

P,
p = ()n = (KT)n (g)
o

where K 1s Boltzmann's constant and T is the Kelvin temperature.

It is now convenient to normalize the variables to have the

dimensions of electric field. The normalization used here has been

Yo
H=V2H (a)
uO
€
- w O -
v' = —— v (b)
uNoq Mo
(3.5)
wN g
P=——29 (c)
N g
= 2
n s == (d)
u 1s the adiabatic electron gas sound speed.
1
u = (Eh% (3.6)

Since a steady drift is assumed to be present define the
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normalized term

W, = ——%__'vo (a)

mu h
o)
(3.7)
"
where h = - (b)
Using the above defined quantities in (3.4) gives the
linearized, normalized equations
vxE-= -Jkoﬁ (a)
. - >
vxH-= Jkoﬁ +hV+hiWoe (b)
(3.8)
v-H=0 (e)
. F o 2
v-E h o (d)
2 > ™ =
Jak$+V . v+ (W) =0 (e)

-> _ 2, > > A N
jhov + 22 = zokoe + hoszxaz+ hOSLB¢WOxaz
O 0°
2k, R N
- ho vé -hol'v‘v - hoﬂ,vdawo (f)

The following quantities have been defined and used in (3.8)

5 Q'B = w_ (3-9)
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*
All other quantities have been defined previously.

Now we will decompose the vector equations in (3.8) into
equations for the transverse and axial components as was done in

Chapter 2.

For convenience we define the differential operator

Wo-v :
M = 5 (3.10)
L7k
0o

Equations (3.8) become

"

Y

Vtx e = -jkohz a)

~ ~ > . >

a x Ve + jgax e = jkh (b)
> >

v.x h = jkoez+ h v+ howz¢ (e)

(3.11)

~ ~ > .. > - >

a x Vthz+ jsazx h = -jk e - hOV£- howt¢ (d)

V.. 2= +h 2 (e)

g € = JBey, oto? €
+ 3

v.* h=jeh, (£)

2 > . (D y -
Jak o+ Vet V- JBV F Ve (Woe)- jeW,6 =0 (g)

* _
Note that a 1list of all definitions used in this work appears
before Chapter 1.
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R > 2. > - ~ > B ~
Jhovt+ hOMvt = 2Okoe hozBa%x vt hO£B¢th a,
2
Lk
OO0 > >
- —-H;- Vi = h Ozvvt- h o¥u W (h)
2 Ziko
Jhovz+ hOMvZ = zokoez+ jB ho ¢- hozvvZ
- h % W, (1)

These equations are now used to derive a set of coupled

equations for e, » h_and ¢ .

z

3.3 Derivation of the Potential Equations

A study of the terms in (3.11) reveals that one term, the
differential operator M in (3.111), changes the characteristic of
the potential equations from coupled.Helmhgﬁz equations to more
complicated differential equations. It is still possible to
manipulate the equations and find a set of coupled equations for e,
hZ and ¢ by introducing some formalism ﬁsed in solving operator
equations. (A discussion of the procedure is found in Friedman,[23]

particularly Chapter 3).

Define the differential operator L by

L= jho(l—jM—ij) (3.12)

and assume that an inverse operator, L—l , exists such that L‘lL = 1.

Py
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Using the definition we can now solve (3.111i) for v, and then
proceed to use this solution’to derive the potential equations.

At the end of the derivation any equation containing L'1 will be
operated on with L to cast the equation into differential form.
Thus, it 1s not necessary that we actually find the inverse operator.

Its introduction makes the following derivations much easier than
would otherwise be possible.

The solution of (3.11i) for v, can thus be written,

2%k

_,=1,2 0o . _
v, = L ke + 8 'E;' ¢ = hr oW } (3.13)

To derlve the equations for the potential equations (3.11) are
combined in such a way that all quantities except e, » hz and ¢
are eliminated from a particular equation. First, consider the

equation for e,

Operate on (3.1lb) with ézx and then with V,- to obtain

t
2 > ~ >
vie,t JBV - € = Jka 'V xh (3.14)
> >
Eliminating Ve e and VX h' gives
{v2+ ko= g%}e_ = =jgh 126 + Jhk v + Jk h W ¢ (3.15)
t 7o 2 IR ooz ooz *

\]

Substituting from (3.13) for v, and operating with L gives
the final equation
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o2y 2 2 2. .2 _ 2
L{vt+ ko- B }ez- kohog'oez = L{-] ehozo¢ + Jkohowz¢}
2,2 2
—b kB = JL Kk h  ¢W (3.16)

Similarly the equation for hZ is derived by operating on
(3.11d) with & x and v.* and then eliminating vt-H and

v X e to obtain

2 2 2 - A . > ~ > .
{Vt+ ko— B }hZ = —hoaz VX v+ ho(azx W£) Vi o (3.17)

Now operate on (3.11h) with V X , use (3.11g) to eliminate

A v and (3.1la) to eliminate v,x & to obtain,

t
>\ _ 2 2, 2
L(Vtx Vf) = jhOQBzoko¢ - jzokohz- thORBWZ¢
>
+ hosztx Vi - JBhOszZ (3.18)

Using (3.18) to eliminate éz'vtx ¥ from (3.17) and

substituting v, from (3.13) gives

2, .2 2 .22 -1 _ o=l . 102
{Vt+ k- 8 }hz— JRokoho" lhz - hoL { jSholBL [lokoez

+j ngo h % w]+jh£2,2k LW
8 hg ¢ — DR, eN, o*BoKo?® = JBn AW ¢

> ~ ™o,
+h R W x vtcp} + ho(azx Wt) Vi o (3.19)

This equation can be converted to a purely differential
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equation by operating with L2 .

The equation for ¢ 1s the most tedious to derive and results

from combining (3.11b) and ézx (3.11n) and eliminating terms.
The result is,

2

M 2 k ~

Lo (vE-62=22n2)¢ - JL(n 9) ] B % $W,~h 2 (W X8, )V ¢
0

-
~h t We Ved + LLJBW ¢-W -V, 4]}

2,2 2 ~
+ L{-ngkohozB¢ + Jshngwz¢ + jzghoszghz - hgzsz(azxwt)°vt¢}
2
22,2 2 %K 22 32
+ JBh gt ke -8 (T)ho"B¢ - JBhZfop oW, = O (3.20)
o]

To continue further it would now be necessary to find the
transverse flelds in terms of the potentials. This, in fact, can be
done and the resulting equations are a set of differential equations
for the transverse field quantities having a linear combination of

Ved s Vi€, s Vih, and ¢ as sources. The main interest here was

to demonstrate that a coupled set of potential equations could be
derived. We shall work only with the simpler drift-free equations.
The potential equations and transverse field equations for this

case are now presented.
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3.4 The Equations for a Stationary, Uniform, Warm Plasma

Now assume that Wo 0 . In this case the operator L

becomes symply
L= jho(l-jlv) (3.21)

The potential equations simplify greatly in this case and

reduce to
22
2, .2 Oy 2. _ 2 2
{Vt+ ko(l - K:)— B }ez =-J Bloho[l - (uw/e)™Ie (a)
_ % 28k B e hk B8 /h
2 2 o 2 _ oBo oOBoor._ "0
vt k(1 - K;O— B th, = -J w2 € K, (x K, 19 (o)

\Y

2
. 2 <) h k
2, .2 2. % 25050
Vet hKy- Kge71¢ =] 2 2 K h

\Y

(c)

(3.22)

Equations (3.22) will be used extensively in later work.

]

The equations for the transverse field (with wo 0) can be
derived by straightforward, but rather tedious,manipulation of
(3.11) . Sancer has indicated the necessary procedure in some

detail and the derivation will be omitted here. The results are

i% 4 2 2 2 2
- By - - LotoPp v.e - Po'Bo™e axv.e
o) K2 K. h t7z h_K zo "tz
S v o o v
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. 8 2, 2 2, 2. 2 2 2 2
jera kk L7k jaok k%k
- o\Bocvthz.'_ Eﬁ axvthﬂ-———w%c Vt¢
h K2 V'O K h
oV v O
220k K
__oBoze A xv 6
2, 2 pA t
tho
2. 4 2 2 2, 2
2 27 8.k B -k
_— Bkc > o'Bo . 2 B¢
{kp— K2 lh = - K2 Vtez- Jko{kap— K2 }azx Vtez
v v
S e8|
—JB{kh- }V h + — V2 ax Vthz
\) “\)
2 2
) k sk 2k gkS
ZB =6 - =g a X Vié
Kv hO Vo

The transverse electric field is most simply writen

jv.e k
> t7z __Q", >
e = g 8 azx h
The axial velocity 1s simply;
2 2.
v =y Zoko - zokOB A
Z h K Z 2
h™ K
o v

(3.23a)

(3.23p)

(3.24)

- (3.25)

Equations (3.22) - (3.25) completely determine all the fields.

It is noted that we cannot yet proceed to solve the problem since
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boundary conditions on (3.22) have not been specified. These will
be considered in Chapter 5 and solutions are considered in

Chapters 6 - 8 .




CHAPTER IV

POTENTIAL EQUATIONS FOR A NON-UNIFORM STATIONARY WARM PLASMA

4,0 Introduction

In this chapter we shall consider one other case where the
field quantities can be expressed in terms of a set of coupled
potentials. Again the equations are presented for reference and to
demonstrate the applicability of the technique. No solutions are
attempted in this work.

it 1s Known that laboratory plasmas are generally not uniform
and in a typical discharge the number density will vary across the
discharge tube. Also, it is possible to create non-uni
densities in other plasma-like devices such as doped semiconductors.

We shall here restrict the analysis to cases where the number density

varies in the transverse plane only.

4.1 The Normalized, Linearized Equations

Since now the background number density of ions and electrons
is allowed to be a function of the transverse coordinates it is
necessary to retain terms arising from differentiation of the number
density. The basic equations can be simplified somewhat by

defining a new set of normalized variables as follows.

43
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> € > .
H=y 2 H# (a)
¥s
€
Nv=2 //:5- w (b)
0 uq H,
=9 (4.1)
n = nan ¢ (c)
p="dy (@)
2 2
(@~ /me ) 2
28 = 5 ° = =2 (e)
W o

These variables are similar to those obtained in (3.5) but do
not now contaln the background number density. In particular note
that we have defined one variable, W , to be proportional to No_x; .
By doing this we eliminate a number of terms which arise from
operating on NO_\; with v . No is assumed to be a known function

of the transverse coordinates. .

Using the normalization presented above and separating the field

equations into transverse and axial components gives

+ o _)
vxe= - kchz (a)
~ ~ -> >
ax v.e+ ,jBaZx e = jk.nh (b)
(4.2)
) > >
v.x h=jkeé+hw (c)
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Us

~ N > -»> -
axv hz+ jBazx h = —Jkoe -h W, (d)

t o}
V. e = +h g° (e)
g € ° JBez ot ¢ €
>
Vo' ho=Jeh) ()
ik 226 +V,° W.- 5pw_ =0 (g)
JO ¢ t wt-JBwZ_ g
2
h K w.+ h 2.4 x w.= 8%k & ol v (h)
IR Wt ot X W= Lk e h 9
2,
2 X'Kn N
ihXw =2ke+ jB —=0 (1)
o'z ooz hg

Note that the only spatially varying parameter in (4.2) is zg
which appears only in (4.2h) and (4.21) .

4.2 Equations for the Potentials

The equations for the potentials will now be written. The

derivation of these is exactly like the derivations in Chapter 3.

However in this case it must be remembered that £2 is a function

o]
of position and thus gives a contribution when operated on by a

differential operator. The resulting equations are

S22 “i 2 2 kg/hg
{Vt+ ko(l- W)—B }ez= "JhoZ R[1- T]:ij):M (a)
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2 2 2
2 2.k B 2 J?,Bk
ol L2 o 2 o0 Bo 0
{(vi+ k5 (1= =——)= 8}h_ = =J - — .
t o (1-32) z (l_sz)z h (1-j )
32 jko . 2 > .
Chy- (l—jzv)]¢ * (1--‘jJLv)Laz'(Vt’Lo)X ] (®)
2
L N h 8
C(9ly We B 24,2 . oo
{(vi+ ho[1-j4 = ————, -251-BK }p = ] ——— ¢
t [0} \Y (l‘jlv)2 (@] KB (l‘jlv)2 z
- B oNoko > . RBho - >
ey Pat BT & gyt Tehox © (e)

(4.3)

Equation (4.3a) is identical to (3.22a) if the same normalizatim
for ¢ 1is used and zg in (3.22a) is regarded as a function of

position,

The other equations are changed‘by the inclusion of terms
proportional to the gradient of the background number density.
Note that the last two equations contain terms in g , the transverse
electric field,and thus are not yet closed equations. To complete
the derivation for the coupled equations it is necessary to show

that € can be expressed completely in terms of the potential.

4,3 The Solution for the Transverse Electric Field

It is clear that the transverse fields can be expressed in terms

of the potentials. This can be seen by writing the equations
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- > > ~
JBaZx e - Jk_h = -3 xv.e (a)
b d . N o> -» - -A
Jk, e + jga,x h + hw, = az?‘vthz (b) (4.4)
—22k3+th$+h£éxW=-22§-V (c)
%0 oW T Botp?yX Wy B, ¢

Equation (4.4) could be written as a set of 6 éQuétions for the

components of the transverse fields and solutions can be obtained

by determinants. Only the expression for 2 1is considered here.

Iy + &
The solution for e is

2. 2 2,2 2.3
2K L7k78 8 L7k-8
B> 2 "B 0 0B° - o 0 B
Kt e = -je[kp— 5 ]Vte + K2 azxvtez+ K2 Vthz
\Y \Y v
LB A
+ jko[kp— K2 ]azxvth - Tt
oV
\Y]
S
-3 hK 8%V, ¢ (4.5)

2 .2
kp = kg Kp—e (a)
2 _,2 2
kc = ko— (b) (4.6)
2 .4
hy 4 5 kc
kt = kb- K2 (e)
AY
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It is obvious that substitution of (4.5) into (4.3) results in
a messy, but deterministic set of equations for the potentials. We
will thus not do this. Some general conclusions may be made by

examining (4.5).

First note that in any problem V No is a known (from

t
measurements or solution of the d.c. equation) fixed vector. The
Inclusion of terms from e change the equations in several ways.
First, the potential equations will no longer be HElmhol&g equations
since terms in Ve will be included. Also the terms in ézxvthz
and ézxvt¢ effectively eliminates the possibility of solutions
which vary in only one transverse direction. Note that, when the
external magnetic field is absent the coupling between transverse

components arlsing from ézxvthz , etc. vanishes.

Of course the extent to which the variation in number density
changes the uniform results depends on the magnitude of the
variations. In some cases 1t may be possible to use the uniform
solutions to derive corrections to the non-uniform problem by

employing a perturbation technique.

In the rest of this work we shall consider the plasma to be
stationary and uniform. Although the equations for this case are
relative.y simple compared to the equations just derived, they are
still quite involved and should provide some insight into the more

complicated problems.




CHAPTER V '
BOUNDARY CONDITIONS, CUTOFFS AND RESONANCES

5.0 Introduction

In order to obtain solutions for the potential equations it is
necessary to derive a set of boundary conditions for e,, h, and ¢.
These boundary conditions are obtained from the expressions on the

transverse fields and are derived in Section 5.1.

It was stated in Chapter 1 that solutions to the warm plasma
equations would be obtained by approximate methods. This is neces-
sary (or at least desirable) since an exact solution of the coupled
equations is very difficult and also because it is possible to make
some very excellent approximations in obtaining simpler approximate
sclutions., However, some information can easily be cbtained about
the approximate positions of resonances and cutoffs by considering
the coupled collisionless equations in a formal manner. The loca-

tion of these points will be found in Section 5.2.

5.1 Boundary Conditions for the Warm Plasma Model

The appropriate boundary conditions for use with the warm plasma
model has recently been the subject of some debate. Sancer has
studied mathematically acceptable boundary conditions by considering

those conditions for which the warm plasma equations have unique

49
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solutionstlu]. From this analysis it is found that the conditions

Etangential = vnom\al = 0 at a perfectly conducting rigid wall are
appropriate boundary conditions for the problem. They are also

reasonable physical boundary conditions and will be employed here.

Waittzl] ‘has discussed an alternate boundary condition to de-
scribe the so called "sheath collapse" condition which can be ap-
plied if it is assumed that all electrons striking the conducting

surface are absorbed.

The effect of the dielectric insuléting container on the be-
havior of propagation in an isotropic cold plasma has been examined

€3l (8]

by Trivelpiece and by Clarricoats, et al .

+
In this work we use the conditions -]:“:1. = Vn = 0. To facilitate

the solutions for the potentials it is desirable to cast these equa-

tions into equations on e, h, and ¢.

5.2 Boundary Conditions for the Potentials

The transverse electric field is given by (3.24).

o
<]
(D
=

> _ o - g
e = -5 aZXh (5.1)
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Since we require that the tangential components of the electric
field vanish at the conducting surface the axial electric field must

vanish.
e =0 (5.2)

The tangential component of (5.1) must also vanish at the boun-
dary. But this implies that the normal component of h must be zero
since (5.2) forces the tangential component of v +&, to be zero. The

remaining boundary conditions are thus

-+ -+
h =V =0 at the walls (5.3)
n n

(5.2) is a boundary condition for one of the potentials. We now seek
conditions which can be applied to hz and ¢. To find these boundary
conditions let us now require that (3.23) satisfy (5.3) at the boun-

dary. The result is

oe sh sh
»> - 2 Z . 2 z 2, 2 p A
Ve nlc: =0=- ka an - e % kp aT
0. 2. 2 Yy
k “k L.k
+ ]_c_& % , Bec 39 (5.ua)
ho an K\) ho 3T ‘
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2, 2, 2
}-;.;ll _0=-"O lBkoB aez_].kz-szc ah
c K 2 on P K 2 an
v \Y)
2 2 . 2 2 2 2
rlage’ Oy gt 5y %o @
- 2 9T 2 on K h dt
K K" h v'o
v v o
(5.4b)
In the above equations we have used the fact that ezlc = 0.

The components of V 185> ete. have been written as normal and tangen-
tial derivatives where fi, T and éz form an orthogonal coordinate sys-

tem illustrated in Fig. 5.2.

Fig. 5.1 Coordinate System for the Boundary Conditions

The rather elaborate boundary conditions, ¢5.4), cznndt e eim-
plified if all components of the fields are assumed to he presst.

tdowever, if we assume that the field components have no tangential
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variations a greatly simplified set of equations can be derived.
Assume that the terms involving g%-are zero, multiply (5.4a) by

—g. 2 '
-—ELfgfg-, (5.4b) by kp2 and add. The result is

K
\V]
2, 2, 2, 2 2, 2 2
j B tp Ko ke b, tpk k| oh, L .
2 D . an y
A\Y \Y

Since the multiplying term in (5.5) is generally not zero the

normal derivative of hz must vanish at the boundary.

o
44

z
an |c

(<%

=0

~~
w
»

<
"t

Substituting (5.6) into either (5.4a or b) gives the boundary

condition on ¢

as| -]hOB aez
dn|c ~ 2 an |c
k
c

(5.7)

5.3 Determination of the Cut-off and Resonance Frequencies

Now that the boundary conditions for the potentials have been
determined we can proceed to consider solutions for the problem. In
all of our work we shall consider only modes where the restriction

that the modes have no tangential variation can hold. This excludes
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the rectangular waveguide and in practice restricts the analysis to
the circular cylindrical and parallel plate guides. Since the circu-
lar guide is of greater practical interest we consider only this

case.

Now we shall proceed in a formal manner to diagonalize the
coupled Helmholtz equations. This method generally is too difficult
to yield solutions for the equations, but it does yield the resonant
and cutoff frequencies. Two difficulties arise when attempting to
solve the equations. First, the eigenvalue equation is a cubic
equation and the roots are very difficult to find (Chen and Cheng,
ref. 22, have stated that the solution for the roots is "straight-
forward" for the collisionless case). Second, even if we can find
the eigenvalues in terms of B is still necessary to solve the trans-

cendental boundary equation for 8.

The equations for the potentials are given by (3.22) and can

be written
e, a; O =213 ([ e
2 )
Ve lby | 3 a1 @af| by | = L0 (5.8)
¢ 231 32 33| \¢
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Here we have defined
- 2 2
a,. = - 32 %gh (b)
13 1% o
-jzozszos
8y T ————— (e)
K 2
v
-2 22 h k g2/h 2
_ o Boo o)
o3 = —¢ 1l - X (a) (5.9)
v v
szZhoe
By = ————— (
31 K2 e)
v
a = :fé].(_o. (f)
32 K
v
_ 2 2
a5 = ho KH - KBB (g)
Define the matrix A by
A = {aij] (5.10)
Equation (5.8) can now be written
€2
2 -
{‘7t + A} hz =0 (5.11)
¢
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*
To diagonalize (5.11) we must solve the characteristic equation

A - 2%1| =0 (5.12)

Expanding (5.12) gives a cubic equation for Az.

6 .4 2, 2
AT - A(2ay) + agg) + AT(ay)" + 2a),a55 - @y5ag) - 3p3ay;)

2
- (a))"ag3 = ay7a333, - @)781385) * 2133533,

) =0 (5.13)
Assuming that the roots of (5.13), Aiz, have been found we can
proceed to find a transformation matrix M which diagonalizes A (the

procedure used here is exactly like the one used in Chapter 2). M

can be written

1 ™2 M3
M= |my, 1 m, 5 (5.14)
May My 1

Note that the matrix A is not a Hermitian matrix. Generally a
non-Hermitian matrix can be expressed in a Jordan canonical form.
This form is diagonal if the eigenvalues, A, are non-degenerate. A
Thorough discussion of diagonalizing non-Hermitian matrices is given
by Friedman, ref. 23.
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2
-8y3(81,-2,")

where mlz -

| 5, (@
8518137853(8y7-257)

mg —::li—z (b)

81,23

2 2
{(‘11“1 )ffgi"l )_ a31}

M a (e)
23,583 32
813833 (a35-15%)
myy = { 23 . __jE}_;l__ (d) (5.15)
a32(all-A3 ) 32
-(a;,=2 2)
1171
m,, = (e)
31 a3
( 2
a, =1 |
11”2
myy = (£)

2
251813-835(8y7-2,")

Note that the particular form for the coefficients
mij has been chosen after examining the limiting values
that li and mij must take in the limits wp * 0 or B+ 0,
They have been chosen to avoid dividing by zero in any

situation. This is particularly important if an attempt

'is made to use the above technique in a numerical pro-

blem. Computers are notoriously inaccurate when they

must compute ratios of very'different numbers.,
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Now cast (5.13) into an explicit equation for 8.
This is done by substituting from (5.9) for 84 and
regrouping in powers of 8. The result is

6, 4

2
+ 3'{2°11°33‘°23+°11(KB°11*D32'913) + Dg}

+€13(Cy9C33-Dp3) = 0 (5.16)

The coefficients in (5.16) are

2 2
Cpq = =k xp -2 (a)
2 2
D23 - zozzazkuahoz (e) (5:17)
e, 2, ¢
D32 " !o - ko (d)
D, =1 Y4 %n % 2 (£)
3 o "B "o "o
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Note that, for a given value of Az, three values of
82 can be found. Eqﬁation (5.13) similarly expresses
three va}ues of Az for any value of 82° The subscriﬁt;
i, has been dropped in (5.17) for this reason. Of
course equations (5.13) and (5.17) are just.two ways of
writing the same equation and cannot be solved until
boundary conditions are specified.

Thus far we have assumed that collisions were pre-
sent. To compute the cut-off and resonant frequencies
we now let v = 0, This must be done 1if true zeros and

infinities of (5017) are to occur. In our numerical

work we expect that B will be small at cutoff and large

at resonance.

To compute the resonance, divide (5.17) by 86, define

a new variable £ = 1/8 and let ¢ = 0. We obtain simply

Kg = 0 at resonance (5.18)

o
° o

“resonance = “B (5.19)

To obtain the cut-off frequencies set 8 = 0 in (5.17).
We thus obtain

011(011033-D23) = 0 (5020)
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One solution to (5.20) gives a cut-off frequency
identical to that obtained for a wavegulided filled with

a plasma dielectric. i.e.,

2 2 _
Ciq = kg xp + 2 0 (5.21)
Solving (5.21) for the cut-off frequency gives
wop = Yo 2r°c? (5,22)

It will later be seen that when B = 0 the eigen-
value, A, can easily be found since the transcendental
boundary equation which determines A decouples.

The other cut-off frequencies satisfy a more com-

plicated equation derived from the second root of (5.20).

011033 - D23 = 0 (5.23a)

Expanding (5.23a) by using the definitions of (5.17)
gives, for the cut-off,

w - w 2
C C

2 2

y
{2w° +mB

+A2(u2+02)} t wg

+ 2% 20+ (o Prag®)c?) + 2222 = o (5.23b)
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2 {2m°2+u82+x2(u2+02)} -
wc - Jz (502“)
1/2
*{[mBa+A2(u2-02)] + 0 mozuBz}

2

To proceed we must determine A. But now this is
quite easily done since several of the coefficients in M

vanish when 8 = 0. In this case M becomes

1 0 0
M =10 1 m (5.25)
B=0 23
bo m32 1_
The diagonalized equations are, by definition, of
the form
2 2 = '
(v,%+2,uy =0 (5.26a)

and solutions can be written in the form
ui = Aifi (5°26b)

where Ai are constants.

In terms of Uy, the original fields are given by

ez u1
hz = M u, (5.27a)
¢ u3
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Using (5.25) and (5.26b), the fields with g + 0 are

e, = Alfl (a)
hz = A2f2 + m23A3f3 (b) (5.27b)
¢ = A3f3 + m32A2f2 (c)

Applying the boundary conditions (with = 0) gives

£ 0 0 } A
as, af, 1
S ™3 @ an

Setting the determinant of coefficients to zero and noting that

the common multiplying term, (1 - m13n123) is generally not zero,

gives
fllc =0 (a)
(5.29)
df, df
2 3 _
= T le (B

Re-examining the original equations shows that the eigenvalue
determined from (5.29a) must be used in the computation of w.p in
(5.22) and the eigenvalues determined from (5.29b) must be used in

(5.24).
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Note that the cut-off frequency, given by (5.22),
is independent of the magnetic field while the other two

cut-offs, as expressed by (5.24), depend on Note

B°
also, from the dispersion equations presented in Chapter
2, that this is also the case for the cold plasma equa-
tions. The H-mode cut-off frequencies are found to
increase with increasing “y while the E—mpde cut-offs
remain fixed. This behavior will be evident later when

the dispersion characteristic of the modes are found.



CHAPTER VI

SIMPLIFICATION OF THE POTENTIAL EQUATIONS BY
THE COUPLED MODE THEORY

6.0 Introduction

At the beginning of the work on the warm plasma
filled waveguide an attempt was made to obtain solutions
by employing the formal diagonalization procedure.
Several difficulties were encountered and the approach
was abandoned. First, it was found that explicit solu-~
tions for the cubic eigenvalue equation, (5.13), could
be found only in the uninteresting cases where o >> ®
or wg. Thus, solutions to the eigenvalue equation had
to be sought numerically. Also, a very complicated
transcendental equation arises when boundary conditions
are applied and this transecendental equation must be
solved simultaneously with the eigenvalue equations.
One of the eigenvalues is usually quite large, on the
order of w/u, and when this quantity occurs in the
‘argument of one of the Bessel functions in the boundary
équation extremely oscillatory behavior occurs and
numerical sclutions are very difficult to obtain.
Finally, it was felt that involved numerical solutions

would be of limited value since a complete analysis has

64



65

to be made for every change of parameters and no simple
approximate solutions are evident. Also, the physics
of the wave interaction is obscured by the complicated

algebra.

In the following development we shall use the fact

that one of the eigenvalues is very much larger than the

others to simplify the equations for the potentials.
Physically this means that the potential fields consist

of components which vary slowly with position and arise

from the smaller eigenvalues plus a rapidly varying term

arising from the large eigenvalue and due to the pres-
sure. To clarify these ideas and those to follow con-
sider equations (5.8) where the off-diagonal terms are

*
written as forcing terms.

2 2
{Vt tajq e,

-fe (a)

2 2
{vt + all} hz -fh (b) (6.0)

2 -
{vt + a33} ¢ = -f¢ (¢)

If the coupling vanishes the right-hand side terms
of (¥¥¥)y are zepro. To obtain a qualitative idea of the
behavior when coupling is present assume that the
coupling changes the dispersion relation very little

from the uncoupled values. (This is true when the

The notation of chapter has been changed by replacing

the diagonal term ay4 by agi to indicate the square of an

eigenvalue,
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frequency is very high relative to the plasma frequency
and cyclotron frequency but is not true in general.) If
the terms on the right of (6.0) are neglected then the
quantities afi must be the square of the eigenvalues of
the differential equations. Consideration of (6.9a) with
f = 0 will clarify this. Eq. (6.ba) becomes

e

2 2 -
[vt + 311] e, =0

The boundary condition, e, = 0 at the boundary,

determines the eigenvalues and the values of 8. Let An

2

be the nth elgenvalue. Equating ail to An and using

(5.9a) gives

2 _ 2 2
B = ko Kp - A,

Now consider qualitatively the effect of the
coupling. Assuming that coupling changes B very little
from the above value we can compute an estimate of ¢ by
substituting 8 into a§3 in (6.1c). a§3 now becomes

2 _ 2 2
833 = hO KH - Bn KB

Since h,, (w/u), is a very large quantity an Kp

has little effect on the value of as3. Also, since ass3
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determines the spatial variation of the ¢ mode it is seen
that ¢ varies extremely rapidly compared to e,

Finally consider qualitatively the effect of the
coupling of ¢ back to e,. The equation for e, is (6.0a).
The exact effect of the rapidly varying ¢ mode coupling
to the e, equation depends on the magnitude of the
coefficients. However, it will generally be expected
that a very rapidly spatial varying quantity will have
little effect on a mode that has much slower natural
variations,

The above considerations suggest that some useful
approximations may be found if we consider (6.0) to be
inhomogeneous equations with the coupling terms acting
as driving functions. The qualitative arguments can be
expressed 1n a rigorous, quantitative manner by con-
sidering solutions of inhomogeneous equations in terms
of Green's function solutions. A number of basic
Green's function theorems are presented in appendix A.
These are used in the next section to obtain a set of
simpler equations for the electromagnetic waveguide

modes,

6.1 Reduction of the Equations for the Electromagnetic-

like Modes

Now consider the equations for the potentials

which were presented in equation (5.8). For convenience
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they are written belowo.
{Vt2 + 3112} e, = 213 ¢ (a)
(v,2 +2,7%) h, = ayje, + ap3 ¢ (b)  (6.1)
{Vt2 + 5332} ¢ = age, + agoh, . (e)

The appropriate boundary conditions were derived in

section 5.1 and are

an,

anlc

Ww 1 e 2%z (b)
anlc = 24 Tnle

€z|c

(5.4

where we have defined

FD‘
N | »

ay ERES (e)

x

We now restrict the development to consider only
solutions for which |B| << hoo Later it will be seen
t..at this 1s an excellent approximation, even near
resonances, since collisions restrict B8 to a finite

value, the maximum value of which is still much smaller

¥ .
See footnote on Page 65,
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than ho” These solutions will be called the electro-
magnetic solutions. In this case it is noted from an
examination of the coefficients in (6.1) that

§3 % hozKH = (w)? Ky, generally a very large quantity.
u

a
It will be seen that this fact allows equation (6.2¢) to
be simplified considerably. (The development that
follows is related to the coupled-mode solutions for
coupled equations [zu])o To express the simplifications
analytically it is necessary to consider the Green's
function solution of (6.1c), considering the right-hand
side as a driving term.

In general it is possible to express the fields in
(6.1) in terms of complete sets of functions which
satisfy the uncoupled Helmholz equations and appropriate
boundary conditions. (The specific functions to be used

later are tabulated in Appendix B.) Write these as;

a_e (a)

] ,
n
hy =) bwy  (B) (6.2)
L
)
m
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Phe solution of (6.2c¢) can now be found in terms

of the Green's function for ¢: From (A.8) we obtain

g2
¢ = -a3ldf;(xo)G¢(xoIx)ez(xo)dxo

! (6.3)

a
n KR 2
.a32\/:J(xo)G‘t(onx)hz(xo)dxo

4

de ™
ez] f
ta,, [p(xo)G¢(xo|x) 5;;"3
1

where G¢(xo|x) is the Green's function for ¢. This
Green's function has been chosen with the boundary
dc
condition ~é%| = 0 since ¢ satisfies a Neumann type of
c

boundary condition. Assume now that e, and hZ are

z
expressed by uniformly convergent series as in (6.2)
where the eigenfunctions satisfy equations of the
Sturm-Liouville type with eigenvalues Anp and y,. In
this case it is shown in Appendix A that the integrals

in (6.3) can be evaluated and the result is;



71
= ._n___..
¢(x) - -a 2 a3, }:
n 3
(6.14)
-8 a

a de 2
+a3l}; ;-5%;__5 (P G, 5_2] + ay[o Gy ™ —=z]

n 33 o.

An approximation will now be made which must later
be checked and will allow (6.4) to be simplified
greatly. This assumption is that the major contribution
to e, and h, 1s from the first few Fourier coefficients.
In particular, it is assumed that ap and bz are very
small when Ap or A approach hy. This will occur for
large values of n and 2 since,for n and £ small,) and ¥y
are on the order of ko for waveguides and frequencies
considered here. Note also that the denominator in (6.4)
can never be zero since a33 is a complex quantity. If
this assumption is true then the sums can be approximated
s is

by the first terms and a332, since it contains ho2

much larger than the eigenvalues. Equation (6.4) can

then be written

a . d 2
o(x) = ialzez + 232 h, + (ay- —3%) [p G, 2 (6.5)
233 a33° ag5° ax,, -
33 33 a
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To obtain (6.5) the terms Anz and 722 have been
dropped in the first two sums and (6.2) has been used to
express the fields in terms of the sums. Note that the
last term in (6.5) is a function determined by the
evaluation of the Green's function at the boundary.

From the results in Appendix A it is seen that the con-
tribution from this term can be found by solving the

equation
v.° +a 2>¢' =0 (6.6a)
t 33
subject to the boundary condition

g.:'_i - l:au _ 319 (6.6b)
(]

¢(x) can thus be written
|
¢(x) = g e, + 832 h, + ¢ (6.6¢c)
2 2
233 233

Now substitute (6.6c¢) into (6.1a) and (6.1b) and

combine quantities in e, and hz to obtain a new set of

equations for e,, h, and ¢',
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2 2 ,
{vt +b,,"} e, =by5h, + by ¢

(v.2 + 1,2 h, = boye, + b,
£ 22 1 By = byre, + byg

(a)

(b)

(c)

(d)

(e)

2 2 ¢ o
{vt + hp } ¢ 0
dn
eZl = 2 = 0
c dn ¢
a¢t| =by Iz
dn c dn c
The coefficients are
2, 2
[y}
b112 =k 2K - B2 (1+ ——E—Ji———g) (a)
-3
Ky (1-3 v)
2 _o 2
2 2 ln,(l—le 2.%)
b22 = ko (1-
k 8

(c)

(d)

(6.7)




T4
L ? k
b = -y -0 *Bf0B  x (e)
5 (6.8)
2 “ h k
byg = - _ﬁ_ﬂB_Q_Q (f)
(l—le)
2 _ 2 2 *
hy® = h Ky - 8Ky (g)
h 8
by = -J -35 (h)
k

In the computation of the above coefficients we
2
have dropped ratios such as ko2/ho2 ~ (%) compared to

unity.

2 2
11 » Pyps Py and byy

defined above are identical to the similar coupling

Note that the coefficients b

coefficients defined by (2.10) for the cold plasma
equations. If ¢' is dropped from (6.7) we thus obtain
the cold plasma equations. This fact leads to an
interesting physical interpretation of the contribution
of ¢ to the equations.

The pressure, through (6.6a), is seen to consist of
two distinct parts. One component is due to the number
density variation occurring in the cold plasma equations

and not dependent on Vp. The second component is due to

h 2 has been used in place of a332 to show its relation

2 2 - 2 _ 2 2
tO h h - a33 ho KH - KBB o
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the boundary conditions imposed on the velocity field
and produces pressure variations which are not spatially
related to e, and h,. The spatial behavior of this
component is determined by (6.7c¢) and, because hp is
very large, will be a very rapidly fluctuating term.

The assumption that the rapidly fluctuating com-
ponents of the pressure due to feedback from e, and h,
was negligible will be checked later.

The elimination of volume coupling from ¢ is very
convenient since it is now possible to proceed with no
approximations to reduce (6.7) further and exhibit the
forms of the solution in an illuminating manner.

We will now separate the equations into two sets of
equations that will prove useful later when the solu-
tions are sought.

Consider the effect of ¢' coupling to h, and e,.
Since ¢' satisfies a homogeneous equation its influence
upon the other fields can be found exactly through
equation (A.11l).

6.2 The Hybrid E Modes

The following form will prove useful later when we
consider solutions that approach the E-type waveguide
modes in the high frequency limit.

Denote by €z and hz¢ the contribution to e, and hZ

by ¢' alone. Thus, hz¢ should satisfy the equation
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2

2
(vt + b22 ) hZ¢ = b23¢'

From (A.11l), using the fact that ¢' satisfies (6.7c), we

a
obtain de', 2
-b ba3lp Gpgx—la,
23 ' (o]
h - ¢ + (609)
z¢ 4 2, n 2-p..2
p P22 p ~P°22

where Gh is the Green's function for hz The total

¢.
field hz can thus be written in terms of the two parts of

(6.9).

-b

h =_____23¢'+h| (a)

4 h 2_b 2 z

p 22
2 2 _
where (vt +b22 )hz' = b21ez (b) (6.10)
' d¢'

My Pas dnle _ Pasby de, (o)

dn 'c h 2_b 2 h 2__b 2 dn'e

P 22 o} 22

Substituting (6.10a) into the equation for e, gives,

b, ,b
2 2 - ' 12723 '
(v +b,, )ez = b,,h, ' + (bl3- ;—5:;——§)¢ (6.11)
p 22
Look now at the magnitude of the terms multiplying
¢'.



(6.12)

This shows that the volume coupling from h, to e,
due to ¢! is on the order of the speed of sound over the
speed or‘light squared compared to the direct coupling
of ¢' to e,.

The set of equations that will be used to find the
hybrid E modes are

.2 2 - ,
('t + b11 ) e, blzhz‘ + bl30' (a)

2 2 '
(7,2 + b, )hz = bye, (b)
\

2 2\ .1 o
(762 + n2) e =0 ()
gl = 0 (a) (6.13)
dh ! de

Z z
in |c = bg a;—lc (e)

de

' =D £ (r)

PR an
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Here we have defilined
b,.b L %2 kx 8
b5 = _%3—“—2 = J o Bo 5 (6.1“)

Finally, equation (A.ll) can again be used to
exhibit the functional form of the fields more clearly.

Thus e, will be of the form,

-b,.¢'
e, = —i3— 4+ e ! (6.15)
2 2_p. .2 z
hp"=P13
An equation for e,' could be written, but is not
of interest now.
Equation (6.15) shows that e,, like h,, is composed
of a slowly spatial varying component, e,', and a
component directly proportional to ¢'.

6.3 The Hybrid H Modes

Now we will formulate the equations in a manner
particularly useful in later work when the modes which
reduce to the H modes are investigated. 1In this case

we first find a reduced equation for e,. From (A.11),
proceeding-exactly as in.the prgwious section, we find

that the contribution to e, from ¢' in (6.7) is
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P
_ =by3¢’ b3 ., 46,
zZé h 2-b 2 h 2_b 2 dn 4
P 11 p 11 1
The total field can be written,
_bl3¢' '
ez = th——-z- + ez (a)
P 11
where
{(v,.%+b,.%}e_" = b..h (b) (6.17)
t 11 z 127z °
b,.¢"
_ 13
'l = 2 —2le ()
p 11

Substitute (6.17a) into the equation for hz to obtain

b,,b
240..2}n_ = 21°13
¢ *P22 thy = Byye,! + [bp3- — =31t (6.182)

p @l

{v

The magnitude of the second term multiplying ¢' is
again very small compared to the first term. This shows
that the coupling from ¢' through e, is considerably
smaller than the direct coupling from ¢' to hz. Thus

(6.18a) 1is very accurately given by

2 2 _
{vt +b22 }hz = b2lez' + b23¢' (6.18b)
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It is now desired to obtain a set of equations for
ez', hz and ¢'. To do this it 1s necessary that the
boundary condition on ¢' be expressed in terms of ez'.

Take the normal derivative of (6.17a) and evaluate

at the boundary.

de -b de !
z = 13 de' Z
dn 'c 2 2 dn |c + dn |c (6.19)
h_“=b
p 11
But
d¢'| . déz|
dn 'c¢ 4y dn 'e
Therefore
)
dezl 14+ bl3bu dez |
dn 'c n 2_b 2 dn 'c
p 11
2 2 '
deZI hp -bll deZ | (6.20)
dn ‘e h 2-b 2+b b dn '‘c ‘
11 1374

11 1ez' = bioh, (a)

g tPoo th, =Dbyye '+ byge! (b)
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{vt2+hp2}¢' =0 (e)
(6.21)
ez'lc = b6¢'lc (a)
dhz ’
anle =0 (e)
de !
dé - z
Eﬁ_'c bq _EH-|c (£)
The boundary coupling terms are
2
b -j2 "B
by = 13 % -2 (a)
6 h 2_b 2 h Ky
p 11
; (6.22)
2 2
h_“-b -Jh BK
b, = b [ 11 ‘| L (b)
7 b h 2_ l 2 ‘82
p *h13Py |

Note that the boundary condition on ez' depends on
the value of ¢' at the boundary. In the next section
it will be shown that (6.21d) can be written as a mixed

boundary condition on ez'
6.4 Derivation of Mixed Boundary Condition for ez'
An examination of (6.21) shows that ¢ depends on

de '

dg through the boundary condition. Since the boundary
de_ '

condition on e,'involves ¢' it will also depend on dz

and actually is a mixed boundary condition. An examina-

tion of the solution for ¢' will show that this is the
case,
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Consider the solution to (6.21c) in a circular wave-
guide for modes having no azimuthal variation. The

solution is tabulated in appendix B, (B7), and is

( -aJo(h r) 6 )
¢' r) = T.(Tl%— .22a
hp 1 pa :
where a is the waveguide radius and a is
2 2
b“(h -b ) e !
- p 11 z

2
hp -bll +hﬁb13

In this case hp is approximated by holfﬁ since,
by hypothesis, 82 << hoz.

Since ho is generally very large at microwave fre-
quencies (6.22) can be evaluated near the asswwotBtde

expansion for the Bessel functionsﬁ&%ﬂi@

-a cos(h_r-=n/U4)
$'(r) = P
hp sin(hpa—ﬂ/u)

cos h_a+sin hpa

0'(a) = $— { y (6.23)

- h_a
P cos hpa sin p

Now define hja = n+jE where both |n| and |£]| are
much greater than unity and expand (6.2%). 1In this

case sinh £ 2 cosh § £ ea;%and (6.23) becomes
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' (a) = a {COS n+sin n"'j(COS n-sin “)}

hp cos n-sin n-j(cos n+sin n) (6.24)
Simplifying further gives
' Ja
¢'(a) * o= (6.25)

p

Now substitute (6.25) into (6.21f) and use (6.22b)

to obtain the mixed boundary condition for ez'.

J b13bu de !

Z
2 2 dn
hp(hp -bll +bnb13)

e '| =

Even if it were not possible to use the asympototic
expansion a mixed boundary condition could still be
found for ez'o In the general cése it 1s not possible
to exhibit the boundary condition quite as compactly as
(6.26) since one must retain the solution for ¢°'.
Generally, since h, 1s so large, (6.26) will be an
excellent approximation.

6.5 Relation to the Cold Plasma Model in the Zero
Temperature Limit

In all the above derivations it was assumed that

2 2

h 2 was much larger than bll or b22 . This assumption

p
will almost always be valid for the electromagnetic

modes, 82 << h°2° In particular, note that as the
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temperature is lowered the approximation becomes better
since ho2 s (%)2 and ii?!wmo*»Thus;"és T + Ouhl > =,
The above equations for the warm plasma model are 1n
a particularly useful form to consider the zero tempera-
ture limit. Recently the question whether or not the
warm plasma model reduces to the cold plasma model has
been the subject of some controversy. In two articles

in the same volume of Electronic Letters Wait 'ﬁf‘C?O]

claims that the warm plasma model reduces to the cold
plasma model and Lee et al claim it does notglsin a
later paper Gg;JWait says "Strictly speaking, (Lee's
conclusions are) quite true; however, it should be
pointed out that, for any finite distance from the
boundary, the transition to the cold-plasma solution
is indeed uniform." An examination of the equations
derived above will verify the statement. However, it
will also show that the boundary term arising from the
pressure mode is still extremely important. This point
will now be discussed in some detail.

From the results derived in Chapter 2 it is evi-
dent that the cold plasma model yields physical
inconsistences since the election velocity at the walls
can be quite large. With the warm plasma model the
additional boundary condition v_ = 0 is available and

n
must be satisfied for any temperature. A detailed
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examination of the normal component of velocity will

give some insight to the behavior at the boundary and

allow us to look at the zero temperature limit in detail.

Using (3.5b) to recover the actual velocity from
the normalized velocity in (3.30a) gives;

é.
0

=2 2 2 2
VAT k ko - de, | J k, as
> Kf dn ho dn

-52 %1k %k 2 dan

© Bo ¢ Z} (6.27)

X 2 dn ¢

'3

Consider (6.26) very near the boundary. We will

dh
omit the term —a% in thils discussion since it is zero

precisely at the boundary. v can be written in terms

of the primed fields through equations (6.19).

2 A
dez' b13 de! jkc ra3l dezn a32 dhz'd¢'
Vol v -8l - - S H I R =
r+a hp o] hp dn hp dn dn
(6.28)
dhz' dez'
Using (6.19h) to express ~gn— in term ——— gives
Jk 2a Jk 2a b,,b de '
c 31 c “32 2374 z
v | -8+ + ( )}
n h h ° h h_° h_°~b,.%+b,b dn
r+a op op p 11 4~13
2
Bb J
13 c , d¢'
+ { 2 + ) an (6.29)
p o



86

Now consider the magnitude of the terms multiplying
de !
dg in (6.28). Note that the second and third terms

in the bracket are generally much smaller than B since

they both are on the order of (%) 8 Q 10'68° Neglecting

these terms we find,

2
de ' b k

pA 13 c de'
v | ~ -8 + {B—x+ 3 —} (6.30)
Nh,a dn hp2 ho dn

In essence the above is just another derivation of
the boundary condition (6.191). However, the approxi-
métion introduced shows up more clearly. Some objection
might be raised to neglecting the terms that are dropped
in deriving the boundary equation. However, in the
numerical work required to solve such equations one
seldom requires that the remaining quantities approach
zero to this 1limit since the effect on the dispersion
curve or eigenvalues belng sought is generally negli-
gible. 1.e., practically we are only interested in 8
or the field quantities to the first few significant

figures.
Now consider the low temperature limit. As T - 0

the boundary condition on e_' becomes, from (6ela.5
de_' z

ez'|c= 0. —a%—lc will not be zero and the contribution
de '

from ¢' must just balance -8 dz . Since the quanti-

t ]
ties multiplying g%; approach zero as l/ho, Q%H must
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4
T,
198
}r=a (a-r}
To/ll
1241
r=a (a-r)
4
”ﬂ T_/16
|48 m
dr Ay
{ 1/V1
1] /},/m/\/\/\ﬂ/ N
r=a (a~r)

1]
Fig. 6.1 - Sketch of|2_| Near the Waveguide
Boundary for Different Temperatures
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approach infinity in the same 1imit. The solution for
¢' obtained for the circular wavegulde and given by
(6.23) has exactly this behavior. It is illustrative to
plot Q%% for different values of temperature. The
magnitude of this function is shown in Fig. 6.1 for
decreasing values of T and with collisions sufficiently
large that the exponential and oscillatory behavior

are comparable,

Note that for T-+0, Q%% approaches a function very
similar to the delta function. Even in this case, where
the influence of the pressure is absent a short distance
from the boundary, right at the boundary the normal
velocity must vanish. Thus it must be said that the

warm and cold plasma models do not correspond and that

the inclusion of the pressure term resolves the non-

physical difficulties arising from the cold plasma model.

In resolving the difficulty in the cold plasma
modelvwe have caused another problem. In the original
fluid equations we neglected the term, (;°V)§o For
véry small temperatures this term may now not be negli-
gible. The actual value of the non-linear term has to
be investigated for a particular problem to see if

(V°V)§ is truly negligible compared to mgo



89

To sum up the discussion we can say that generally
it is expected that use of the cold plasma model or
zero temperature l1limit of the warm plasma model in
bounded problems will cause physical inconsistencees to
occur. We will henceforth assume that the temperature
of the plasma is not zero.

Finally, note that in all the derivatives in this
chapter we have assumed that ho was a‘very large number
by comparison with other terms with which it might be
combined. In particular, |[8| << h_. This last res-
triction limits the discussion to what we have called
the electromagnetic modes. It will be seen when solu-
tions are found that the assumption is very well justi-
fied.

Another set of modes, the electro-accoustio solution,
exist where g »~ ho. It would be possible to derive a
reduced set of equations for the case similar to (6.19).
However it is generally just as simple to work with
the original equations. These modes will be discussed

in the next chapter.



CHAPTER VII

APPROXIMATE SOLUTIONS FOR THE NORMAL MODES

7.0 Introduction

At thils point a procedure similar. to that used in
Chapter 2 could be followed to obtain solutions for the
normal modes. Such a procedure has been outlined by
Sancer and by Chen and Chen.; Instead, a coupled-mode
approach will be pursued. This procedure 1s discussed
~ briefly in Friedmantaipand is quite similar to the
Fegnberg iteration procedure discussed by Morse and
!eshbach°[27]
Although the cases considered in this work have
been for a uniform plasma, the non-uniform situation is
of interest. The method of solution by transformation
of the differential equations to a diagonal form is
applicable only when the transformation matrix, M'l,
commutes with the differential operators. This is not
the ca;e when the plasma is non-uniform.
The iterative method used here is general enough
to apply to the non-uniform plasma. It also has the
advantage of yielding a hierarchy of approximations,
the higher order approximations including more terms
in the solution. An examinatioh of the various approxi-

mations gives a good l#we of the way the various modes

90
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couple and of the significance of the coupliing. This
procedure shows simplifications which can-occur in an
otherwise very complicated problem.

In the treatment to follow we will classify the
solutions as 'E', 'H' and 'p' modes, the designation
indicating that the solutions obtained‘approéch theése
uncoupled modes in the limit of zero plasma frequency
and cyclotron frequency.

The formal method of solution to be derived is in
fact exact. Only after deriving the equation for the
dispersion relation is it necessary to ap
result. This approximation is necessary in order to
truncate An infinite secular determinant for the dis-
persion relation. The accuracy with which this can be
done depends on the degree to which the modes couple.

7.1 The Hybrid E Modes

Now consider the modes which approach the electric
modes in the limit of zero coupling (or w vh@wo and wp).
The reduced equations derived in Chapter 6 were
very useful in demonstrating the functional form of the
modes. However, in the derivation to follow it is more

convenient to start with (6.7).
Assume that all the filelds can be expressed in

complete sets of functions which satisfy the uncoupled
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eigenvalue equations subject to the appropriate boundary

conditions. These elgenfunctions are solutions of;

2

(vt +xn2)en = 0; enlc =0 (a)
(7.1)
aw
)
(vt2+”22)"‘z =05 gzl = 0 (b)

To derive the equation for the E modes it 1is

assumed that e, is the source of the other flelds.

These fields are found and substituted back into the

equation for e, and an equation for the coefficients is

z
found. Let the fields be given by

e, =Zanen (a)
n

h, = E:bzwz (b) (7.2)
L

¢! =szwm (e)
m

Equations {6.7) are reproduced here for convenience.
2 2
(v.“+b,;,%)e, = by,h + by3é! (a)

2 2 -
(vt +b22 )hz = b2lez + b23¢' (b)
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(7,240 )e" = 0 (@) (7.3)
dh,
ezle = —amle = 0 (d)
de' - €
~dnle = Py —anle (e)

First calculate ¢'. From Appendix A, (A.3),
- derj2
o' = [G,(x,/x)p(x)) deJO (7.4)

The Green's function for this field is;

w_(x )w_(x) |
G¢ =-Z n 02m2 (705)
m o +hp

Assuming (7.2a) is a uniformly convergent series,

the boundary condition can be written

' de
%'c = bﬂzas _d_nlc (7.6)
s n

Substituting into (7.4) gives

~by Z as(es,wm)

¢'(x) =) { S Iw_(x) (7.7)
2; 'Ym2+hp2 m
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The notation (es,wm) is used to denote the boundary
evaluation. This notation, together with the notation
(es,wm) for the scalar product is discussed-in Appendix A.

Now compute h,. Using (7.2b) to expand (7.3b) gives

zz (-722+b222)blw£ = b2l§z ace  + b23 }; Co ¥ (7.8)
L m

s
Taking the scalar product of (7.8) with w, gives
(-v,%+b,,%)b, = b Za(ew + b, C 6 (7.9)
Yy ¥Pop )Py = Doy s Cs2Wy 23 “méem .

S

Here we have used the fact that ¢' and hz are
expanded in the same orthonormal functions.
Substituting for Cfrom (7.7) gives,

b23b§(es’w2)

<-uz+b222>bz=Zasfba(ess",)- >z (7.10)
s —vy *hy

The expressions for h, and ¢' can now be substituted
into (7.3a) to yield an equation for the coefficients

for ez°

SRS URINS e
E: (-An +b11 )anen = b12 bnwz + b13 mem (7:11)
n [} m
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Taking the scalar product with en gives

2 2 4 :
+by4 )an=b12 zz bl<én,wz)+ b13 }; Cm{en,wm) (7.12)
: L m

Substituting from (7.7) and (7.10) for b, and C, glves,

b,,b,(e_,w,)
23 4 "2y
aglbyy (egswy )= Y Zap 2%
2 2\ _ Z Z "V Thye
(=2p7#by;M)ap=by, Y T %p 2
L (s Yg-TP22
T"
~by /, as<es’wm)\\
S
(epsWy )t b13§§ 57— ( {&ns¥p?
-y_"+h
m P
(7.13)

Interchanging summations and replacing the dummy

index m by & gives

2. 2. _
(=3,"+b),%)a = zi ag {byobyy

e_,v e _,w )
z; i*f ;)< nsy

5
s Yy *Pss
}:[ L SPLPEL . _P13% ]
- 55 oY
1 (-Yl +b22 )(‘Yz +hp ) ("Yi +hp )

(eg,w, ) ey ,w,)) (7.14)
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Equation (7.14) is an infinite set of equations
which must be solved for the complex wave number, B8,
and the coefficients a . Note that the derivation of
(7.14) is so far exact, i.e., it is not a perturbation
method and no terms have been assumed to be small.
However, to obtain solutions of (7.14) the infinite
set of equations must be truncated. This implies that
for n sufficiently large the an approach zero.

Morse and Feshbach Eiiﬂ discuss equations similar
to (7.14) and discuss solution by an iterative techni-
que where all terms but the first are set to zero, the
zeroth order value of 8 found, then the first four
terms are retained and the zeroth order solution is
used to obtain the first order B8, etc. We shall use
a similar technique, except that a root-searching
method will also be employed. The numerical results
are presented in the next chapter.

Note that if the second sum is omitted from (7.1lh)
we obtain the spectral solutions for the cold plasma
model. In fact, this was done in obtaining approximate
solutions from which to proceed with the numerical solu-
tions obtained in Chapter 2.

At this point we will digress from the problem of
finding the normal modes so that we may check the

reduced equations derived in Chapter 6.
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By proceeding in the manner to be illustrated all of the reduced equa-
tions can be shown to yield to the original fields when the spectral
representation is used for the primed fields. To clarify this we will

re-derive equation (7-14), starting this time with (6.10).

D)3
h = ——————¢' + 1! (6.10a)
Z h2_b 2 A

P 22

h'Z satisfied (6.10b) and the solution is;

A aS <es, w£>
) 2},
21 <« 2 Y s

Y ale_,w,)
Y g s s’ 72

7 7 3
(=y,” + by,

}u (6.1
) bw, (6.11)

Substituting for ¢' from (7.7) and combining gives,

dg <Fg> Wy

h, = 1Dy 1 T, 2"
2 s Yz 22
b.. b
23 4 1 1
+Z{—————h2_b2§as(es,w2)[ 2+h2_ 2+b2 ]}wm
L 22 Yy p s 22
(7.15)
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Clearing the fraction gives

bo3by z agleg,w,)
S

)ty 2, A5 Ay 7.16)
hy = [ 1o Zen 2 o Zan Dy T2 M (726
) s Ve TP22 Yy P22 Yy T

This result is identical to (7.14) which was derived
from the original equation for h_, (7.3b).
7.2 The Hybrid H Modes

The preceeding derivation for the coefficients in
the expansion of the perturbed E modes was straight
forward and involved no approximations beyond those
made in deriving (6.7). This was the case because the
¢' modes depend directly upon e, o

In deriving an equation for the expansion coeffi-
cients of h, it is desirable that the field e, which
couples to hz be expressed as simply as possible. 1In
particular, we wish to avoid having to solve an infinite
set of equations for the expansion coefficients of e, o
We can accomplish this most easily by using the field
ez' derived in (6.17) to express the coupling to h,.
Further simplification is achieved, with little loss of
accuracy, if the inhomogenecus boundary (6.17¢9 -is
replaced by the simpler condition, ez'lc = 0,

Again assume the fields can be expressed by the

spectral representati :ns used previously where now
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e,' = Zanen | (7.17)

n

The boundary condition used here, ez'lc = 0 will
be accurate if ho is sufficiently large and 1if ez' can
be represented reasonably accurately by the first few
terms in the series. The exact boundary condition on
e,' was discussed in Chapter 6. The accuracy of the
assumption can be checked after calculations have been
made and generally it is found that the assumption 1is

excellent.

From (6.21a),

2. 2 ~
Z {oy, ™40, Yape, = blzz byw,
n J

a_ = 012 E: b.(e ,w.) (7.18)
Uyt %y

¢' is now given by (7.7) where b, is replaced by

zz an(en’wm)

¢! = -b7 zz { = 5 ) }wm(x) (7.19)
m m p

b7.

These relations are now used to compute hz. The

equation for hz is;
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{v, }h, = byje,’ + by3 o' (a)
(7.20)
dh,
& = ° (b)

In terms of the spectrums;

2 2 _
EZ {-YL +b22 }bzwz N b2l§§ 2n®n + b23§; mem (7.21)
2 n m

2,, 2y, -
{-v,“+b,, }b, = b21§z ap(ensWy) * bysCréyn (7.22)
n

Substituting from (7.19) and (7.20)gives

b
2 2 - 12
=y, +by,"1b, = bzlz { (—y 2 } bj<en’wj)}<en’w2>

~¥p ¥b11°) j
-b7§z an(en,wﬁ)
+ by _Y£2+hp2 ) (7.23)
}; by{enswy) (ensw |y
b21P 1222 ¢ YT )

}EZ bj(en,w )(en,w )

- b23b7§; _, 24p 2
YQ p
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2., 2, _ (ens¥y) (en’Wg>
vy *bgp I, = zb b12P 212 o
J n 11

b12b23b7 Z (en,w )(en,w )

Xn +b11

} (7.24)
'Yz

Equation (7.25) is again an infinite set of alge-
braic equations which must be solved for the wave
numbers and the coefficients. It is similar to the
equations for the coefficients of e derived previously
for the E modes except that the boundary coupling due to
the pressure mode enters with a difficient coefficient.
The remarks previously made about the effect of hp on
the second sum are pertinent here and the coefficient

of the second sum is approximately.

y 2. 2.2
_b12b§3b7 N -L ;B ko»; — (7.25)
hp KH(l-le) [Kch -2,"8 ]

Finally, solutions for the perturbed pressure modes

will be derived.

7.3 The Electro-Accoustic Modes

The solutions considered so far have been explicitely
restricted by the assumption that |B8| << h . This

restriction effectively omits the pressure waves which
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can exist in this case where the electron-gas was assumed
to behave as an ideal gas. This class of solutions is
now considered.

To start the development we will use equations (6.1).

The potential, e hz and ¢, can agailn be expressed in

z’
terms of complete sets of functions as given by (6.2).

Note that en satisfies the boundary condition e = 0

n'c
in this discussion. Here ¢ is considered to be the
source function generating thg_other fields.

With ¢ regarded as the source we can solve for the
other fields in terms of ¢ and then substitute to find
a self-consistent equation for ¢ itself. Proceeding

in the manner illustrated in section 7.2 and 7.3 we

find

C e ,w
11

where ay and C'j are the expansion coefficients for e,
and ¢ respectively.

The expression for e, can now be used, together
with the spectral representation for ¢, to find hzo
The result is

— ‘
aZIZ an{en,wz) + 53 C,j 6”

b, = L (7.27)
L (-, 2+a,,2)
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and we have used the fact that the expansion functions,

W,, are an orthonormal set.

Substituting the above expressions into (6.lc) and

assuming ¢ =Z mem gives the following expression for

m
Co-
2 2 ar323;
(-Ym +a22 )

§: 13<en’"j> 432823
=) C }; {[ay,+ 1{e_,w

; J 2 e I R S (&ns¥p)

- au(en,wm)} (7.28)

Again we obtain an infinite set of equations whict
must be solved for the expansion coefficients. Although
at first sight (7.28) is an extremely lengthy equation
an examination of the magnitude of the terms shows
that it can be simplified cohsiderably with negligible
loss of accuracy. To see this note that in the limit

w rﬁ,wo or wp the coupled potential equations, (6.1),

decouple and (7.28) becomes simply (-ym2+a332) = 0
(1.e., ag4s i & j, approach %ero as o + »), In this
h, K=
limit 82 1s given by 8% = 2 HIM  pup gynce Y
B
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is an eigenvalue determined only by the geometry and
is generally very small compared to ho (it is usually
on the order of ko at microwave frequencies) we can
write B8 » ho as w + «,

If it is now assumed that as the frequency is
lowered B does not deviate from ho by more than a few
orders of magnitude then (7.28) can be simplified
considerablyo. Using the assumption that |8| >» ks
substituting for a1j explicitly 1in terms of the plasma
parameters and comparing the magnitude of the terms,
we find that, to an approximation which neglects terms

of order (U/C)2, (7.28) is given by

a,.a.,{e W ) (e _,w.)
a,.°C ch z 331 n m o n’J (7.29)
33 m J (-1 “+a..2)
J n n 11
Actually, we need not have gone to so much trouble
trying to simplify (7.28) if we were interested only
in evaluating 8 and Cm since (7.29) is not that much
simpler than (7.28) from a computational standpoint.
However, the previous arguments shed considerable light

on the physics of the interaction of a pressure mode

*
Note that the argument that |g8| ~ h_ implicitely
assumes that B is never zero and'thisoimplies that

collisions will keep |8]| quite large, even at a frequency
where, for the collisionless case, 8 would vanish.



105

with the other field quantities. In particular, by
considering the quantities that could be neglected we
can say that the dispersion characteristics of the
accoustic mode are virtually unaffected by the volume
coupling with the axial magnetic field or the boundary
coupling with the axial electric field. Mathematically
this means that the normal ¢ mode can be very closely

approximated by solving the equation

5 ez all a13 €, .
v, + =0 (7.30a)
Vo f f3 \Y
.|
Iy _
ezlc = smle = 0 (7.30b)

Generally, (7.30) has two possible solutions and

one solution, that for which |B]| << h,, must be dis-

.carded since the above arguments apply only for the

pressure mode. Note, however, that when wg = 0 the

differential equations for e, and ¢ reduce to the form

of (7.30). Sancer[lu] has covered the details of the

- 8olution in this case.

This completes our work on deriving methods of
solutions for the coupled potential equations. These

methods all yield an infinite set of equations from
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which the coefficients must be found. In the next
chapter solutions for the fields and dispersion rela-
tions are obtained for the circular cylindrical waveguide.

7.4 Relation to Perturbation Theory

It has been mentioned that the method of solution
derived in the preceeding sections is exact and the
ability to compute the dispersion relations and the
fields rests entirely on our ability to solve the infi-
nite Set of equations for the coefficients. The method
was developed as a generalization of a perturbation
method suggested in Friedman [23]° Since the perturba-
tion method is simpler and often as accurate as the more
complicated method presented above it is presented here.
The presentation will closely follow that given by
Friedman.

To employ a general treatment consider an equation

of the form
(Lo-l)u = —-ALu (7.31)

The equations for the modes can all be written this

2 _ 2
form if we let Lo >V, A= --b11

A =.-b222; u -+ hz for the H modes, etc. If instead of

» U= e, for E modes,

expressing the right-hand-side of the equations in terms
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of the spectrum of the coupled modes, the formal Greens
function representation of the coupled modes was used,
then AL would be an integral operator and (7.31) is an
integral-differential equation. This is important since
an integral operator is bounded.

Now assume that AL is a small operator, i.e., a

bounded operator with bound e. Also, the homogeneous

form of (7.31) is an eigenvalue equation with eigen-

function v and eigenvalue vn

'(Lo'“n)vn 0 (7.32)

To employ the perturbation method we now assume that

A 1s close to the nth eigenvalue Vn and that u is close

to the nth eigenfunction Vo We put;

- 2
A= v + a e + ase” + oo (a)

(7.33)

2
Vo + wie + w,e + ... (b)

=
i

where a, are unknown constants and wy are unknown
functions. Substituting (7.33) into (7.32) and
separating into equations having like powers of ¢

gives an infinite set of equations which can be solved
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for ay and Wy o We will retain only the first power
in €.

u can be represented in terms of the spectrum of

u = }E a, v, (7.34)

Substituting (7.34) into (7.31), and utilizing the

spectral representation of the operator from (7.33)

gives,
u = z r-il)-; <Vk,ALu> vk (7o35)
k .

Since we have assumed that u is of the form (7.33a),
the coefficient of Vh must be unity. Therefore, equating

the first term in (7.35) to one gives

A= v v (vn,ALvn> (7.36)

Using this value of A in (7.35) gives

‘u vV +§Z r—%— {vK,ALv ) vy (7.37)
k ' .
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where phe prime indicates that the summation is taken
over all k except k = n.

The above development is essentially that given by
Priedman. Now it will be applieg to our problem for
the case of ﬁhe hybrid-E modes. The extention to the
other modes 1s obvious.

To proceed from the formal theory just presented to
the specific case of the hybrid-E modes it is necessary
simply to cast the equations for e, into the form of
(7.31) and identify terms. The algebraic manipulations
in section (7.1) accomplished this and the equation for
the coefficients of the Fourier coefficient of e, (7.14)
is in the form of (7.31). Examining the terms in (7.14)
shows that

<en’wz> (en,w£>
12 21 2]
'7z + bys

ALv

K,

b, ,b,ab (e ,w,) (e_,w,)
1272374 n’ g n’® g
- Z [—==—=——7 + b,3b)]

2 2

(7.38)

Upon making this identification, it is now a straight

forward procedure to solve for the perturbed wave numbers
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and field quantities. The dispersion relation is found

from (7.36) and in this case becomes

b -2, = (v ,aLv ) (a) !
(7.39)

e, is given by;

e, = e, + z ;—?%;_5 <VK’ALVK> ex (b)
k#én "11 k

The advantage of the previous developments of an
iteration method for determining the dispersion relations
and Fourier coefficients was that it was an exact solu-~
tion (within the approximations concerning the magnitude
of B compared to ho or ko) to the problem. The disadvan-
tage is obviously that we are left with an infinite set
of equations to solve and some method of transaction
clearly must be employed.

The advantage of the above perturbation method is
its simplicity, but the accuracy of the method depends
on the assumption that the eigenvalues and fields can
be expanded in a series of the form (7.33) which is
characterized by a smallness parameter, €. This implies
that the actual fields and wave number should not deviate

appreciably from that of the uncoupled equation if the
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method is to be useful. In the next .chapter the"
iterative equations are used to obtain solutions- for the
dispersion relations for the various modes of propagation.
Along with some of the dispersion curves, a plot of the
magnitude of the Fourier coefficients is given. When

the magnitude of this coefficient is considerably less
than unity the perturbation method cén be expected to
yield accurate results. It will be seen that this 1is

the case for a considerable portion of the spectrum, in
particular, for frequencies not too close to the cyclotron
frequency. If the frequency of interest is in this region
then the perturbation method will give a simple and

accurate solution of the problem.



CHAPTER VIII
SOLUTIONS FOR PROPAGATION IN A CIRCULAR GUIDE

8.0 Introduction

In this chapter the 1lterative techniques developed
in Chapter 7 will be used to obtain dispersion curves
for the plasma modes. The curves presented here are
obtained by numerically solving equations (7.14), (7.25)
and (7.29) for the hybrid E, H and p modes respectively.

The analysis of this chapter 1s restricted to lowest
wavegulde modes having no angular variation. The
geometry and coordinate system used is shown in Fig. 8.1
and the normal modes used in the expansion procedure

are given in Appendix B.

Fig. 8.1 Cylindrical Waveguide Filled with Warm
Anisotropic Plasma y

112
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In order to calculate the dispersion curves and
field structures for the various modes we must solve an
infinite set of equations for the Fourier coefficients
of the particular mode. Our ability to solve these
equations depends on being able to truncate them, which
in turn implies that the Fourier coefficients must fall
off rapidly. Practically, it is possible to carry only
the first few terms in the equations in a numerical
computation since computation time increases approximately
as the square of the number of coefficients. In the
numerical work we have carried through the computation
of three coefficients. It will later be seen that this
is generally sufficient and for a large portion of th-
spectrum the first coefficient, corresponding to the
empty waveguide mode configuration, gives an excelle: .v
description of the mode.

The iterative procedures employed are now discussed.

8.1 The Iterative Procedures

Generally, the equations that must be solved to
determine the expansion coefficients and dispersion

relations are of the form

Qa = P_a (8.1)
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Two methods have been employed to solve (8.1). The
first method has been discussed by Morse and Feshbach
and is called the Feenberg Iterationl277. It will be
outlined below where, for concreteness, we will use
(7.14) for the hybrid-E modes as a specific example.

For the E modes the terms in (8.1) are;

2 2 2

Q, = (=2, +b11.) = (=2, "+k Kp-B (1+

n

Pns is the coefficient on the right of (7.14). It

is noted that 82 can be factored from this term so we

can write in place of (8.2),

- 2 .z,,
Qnan = 8 Pésas‘ (8.3a)
where P = 82P' (8.3b)
ns ns -

To employ the Feenberg iteration a series of
approximations are used to find higher orders of 8. The
value of B found is then used to compute Pﬁs for the
next order of 8, etc; To i1llustrate, first neglect the

right hand side of (8.3a) to obtain
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S 2, 2 (8.4)

Next, omit the off diagonal terms and using (8.4)

compute the zeroth order value. Since Pﬁs are functions

of B, the value of Bn—l is used in the computation of

Bn.
2 2
k "K_ =2
8 2 = O P n (8.5)
o} . 21 2
. 0 "B o .
1l + m— + Pnn‘s-l’
H'v

To obtain the first order value of B let an = 1 and

retain two off diagonal terms.

= rlpt
{Qn-Pnn} = 8 anaq

(8.6)

{Qq(eo)-qu(eo)}aq = Pqn(Bo)

o)
Equation (8.6) is then solved for 81L°
The procedure can be continued indefinitely. As
mentioned previously, the equations are carried to

second order in this work.
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Solutions to (8.2) will be obtained by this method only
if the procedure converges. Condions for convergence are
discussed by Morse and Feshbach. In practice, when the method
does not converge the second order equations -are used and the

[28]. This method, which

Poisson iteration technique is emplbyed
employees iteration on 8, is much more time consuming than the
first so is used .only when the Feenberg method fails.

Perhaps the most striking point .@bout the Feenberg
method when actually carrying out the caladlationsis its
simplicity and accuracy for most of the spectrum. Note that
Equations (8.4)-(8.6) are simple algebraic equations which
can be easily solved. The main difficulty occurs in summing
the series in .(7.14) etc., and in some cases, such as for the
parallel plate waveguide, the series can be summed in closed

form[26].

In many cases one would like to have a rapid and
fairly accurate method of determining dispersion relations
without tedious numerical work. The formula (8.5) is quite
useful in this respect. For this reason B, as determined from

(8.5) will be plotted with some of the more accurate dispersion

curves that are now presented.
A computer program, written in ALGOL, which has been
used to compute the dispersion curves is presented for

reference in Appendix C.
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8.2 The Hybrid-E Modes

Now solutions for the modes which reduce to the E
modes in an empty guide will be considered by solving
(7.14) for the expansion coefficients a . Before dis-
cussing the solutions a simplification which can be made
is discussed.

If the coefficients of the second sum in (7.14)

are computed it is seen that this term is

2.2 2 2 2
St = o B (es,wl)(en,wz) Ez h, [Kp =Y, ]

2 2 2..2 2..2 2.,2
(-?i+hp)(-?l+b2?)(-?2+xn)

kc 3

(8.7)

Here the boundary term (en;wz) has been factored
from the sum since it does not depend on %. (See
Appendix B). The terms in the sum can be separated by

partial fractions and simplified by using the assumption

that Ihp2| >> ko2 or I82| to give (omitting the multi-
plier)
. . -h 2 h 2(k 2_Y 2)
32"2[ st 3] (8.8)
2 hp (-yl +hp ) hp (-yl +b,, )(-y2 o

The contributions from the two terms will be greatest
riear resonances.With An * \f the denomenators will never

become zero. (This 1s one advantage of including
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collisions. In particular, if collisions were neglected
resonances with hp could occur and would be a very
sensitive function of w and u.) Since hp2 is approx-
imately hozKH and ho = w/u is a very large number at
microwave frequencies the first term in (8.8) is negli-
gible for small \f and the second term is negligible for

large Yo both quantities approaching -§;-§ in absolute
K

value in these limits. ho H

Notice that h°2/hp2 N 1/Ky. Since the temperature
appears in the sound speed it is seen that the second
term in (8.8) will contain no temperature dependent
terms. The same argument can be made about the first
sum in (7.14). Thus all the significant temperature
dependence comes from the first term in (8.8).

Consider the contribution of the first term in (8.8)
at a resonant point where 712 = Real hpzo This will be
the dominant contribution. In this case this term
contributes a value

-1

S5, = (8.9)
21 KH[hozlmagKH]

2 10

Typically, ho is on the order of 10

10

(assuming
w ~ 10 and u ~ 105)0 Thus for any appreciable value
of collision frequency the denominator in (8.9) will be

a large number and the contribution of the first term
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in (8.8) to the sum will be very small. In fact it was
found during numerical work that the effect of this term
could not be seen‘when plotting data. In an effort to
reduce computation time the sum has been omitted from the
computer program and as a result no temperature dependence
is shown on the dispersion curves. If one is particularly
interested in the effect of temperature it is a simple
matter to add the contribution of S!

12
program, called S2EH in Appendix C, and investigate the

to the sum in the

temperature dependence.

With this approximation {7.14) can now be written

2 2 ‘ 1042B2k02xp82
(=3, "Ky+by, "Kyla, = Ei agl (172 )2 S1e
8 =52,
20282
+ kj- SZe} (8010)
c
where

. (e w")(e w.)
S1e = - 5 - g’ s 53 (8.11a)

.(k )(e oW, ) (e sV, )
P Yﬁ 5> n | (8.11b)
¥ € 2)

L b Yz )(°Y£ +xn

Equation (8.10) is solved by the method outlined in

Section 8.2, The solutions are now discussed.
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An attempt has been made to choose the plasma paraﬁb-
ters . .for which-the dispergion.curves gre piletted to .
have values which can be achieved in the laboratory. At
the same time they have been chosen to exhibit the various
interesting regions which occur. The plasma frequency

is chosen to be 2 x 1010 which corresponds to an election

17 particles/m3o The

gross number density No = 1.26 x 10
electron cyclotron frequency has been taken to have

values below plasma frequency, between the plasma fre-
quency and cutoff and above cutoff. The range of magnetic
field strength necessary to achieve these values is

500<Bo < 4.5 Kilogauss. The waveguide radius has been
chosen to be 1.5 cm and gives an empty guide cutoff fre-
quency of .76 KMC, a fairly low microwave frequency.

This low value has been used since the plasma parameters
can be more easily realized in this region. It is

fairly difficult to achieve plasma densities much higher
than the one used here or magnetic fields higher than
several KG. Our main interest is in the structure of

the dispersion curves. When a particular region is of
interest the waveguide cutoff and cyclotron resonant
locations can easily be found from (5.13b) and(5.24) and
the zeroth order value of B given by (8.5) can be used

to give a reasonable idea of the behavior of B.
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The collision frequency has been chosen, after some
experimentation, to yield curves where the resonant

structure is clearly exhibited but does not vary so

drastically that the behavior near cyclotron resonance

is difficult to plot. High values of collision fre-
quency wipe out the resonance completely. This behavior
is illustrated by exhibiting B8 for one set of plasma
parameters and different values of v. The majority of
the curves are plotted for v = .05 e

Since we are interested in the mode structure as
well as the dispersion curves the second two Fourier
coefficients in the field expansion are plotted. Note
that since we are truncating (8.10) in three equations
we effectively assume that the dispersion relation depends
on the coupling of the first 3 normal modes, e,- It
was pointéd out earlier that the modes can be written
as a slowly spatiai varying quantity and a term propor-
tional fo the pressure term ¢'. (See (6.15)). The

slowly varying term is thus represented by

ez’ = }i a e (8.12a)

n=1

and the rapidly varying pressure-excited term is
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" -b 3¢ v 8
ez = ;—?-—-b——z- ( a12b)
P 11

It is implicitely assumed that the contribution
from (8.12b) has negligible effect on the dispersion
reduction. (This assumption is made when the term in
the sum Sé containing the temperature was dropped)
However, once B is found it is easy to plot the fields
since ¢' can be found in closed form. The total axial

¥f(8.12a) and(8.12b), the field

h, is given by (6.10a) and ¢' is found by solving (6.7c).
The field structure for,e_, h, and ¢ will be shown for
one of the dispersion curves.

Now consider the dispersion curves for the hybrid-E
modes plotted in Figures 8.4-8.8%. These curves are

plotted for w_ = 2 x 10%°

and the cyclotron frequency 1is
varied.

It was previously stated that a good approximation
to B could be found by using (8.5) with the Feenburg
iteration procedure. To 1illustrate this point 80 has
been plotted in Figures (8.2) and (8.3) and should be
compared with the more accurate accompanying curves. It
is seen that 80 approximates the more accurate expression
for B quite closely except for a region near cyclotron

resonance, The results obtained near wp have been plotted

as a number of disjointed points.
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From the behavior of these curves near wg it may
be anticipated that the Feenburg iteration will not
converge near the cyclotron frequency. This is the
case and to find 8 it is necessary to employ a root
searching method such as Poisson's iteration formula.
The difficulty can be found by examining the magnitude
of the Fourier coefficients shown with the dispersion
curves. Near wp the higher spatial harmonics are
strongly excited. These terms are neglected in computing
Bo° Also, i1f the uncoupled electric modes are examined
it 1s seen that they all have resocnances near wp Thus,
near the cyclotron frequency the system of coupled equa-
tions behaves somewhat like a set of coupled oscillators,
each component of which is tuned to the same frequency.

Now we digress slightly and consider the solution
of a simple coupled oscillator circuit where the two
tuned circuits are tuned to the same frequency. The
behavior of this circuit sheds some light on the cause
of some of the dispersion characteristics found from
the coupled mode theory.

Consider the circuit shown in Fig. 8.4, Assume
the two resonant circuits are tuned to the same fre-
quency, w;. The behavior of the response curve is

[31]

well known and is plotted in Figure 8.5 where a is

a parameter which typifies the coupling betweem the cir-

cuits
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Q
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Fig°'8.u - The Double Resonant Circuit
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Fig. 8 5 - Response of the Double
Resonant Circuit for
Different Values of Coupling
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a = 1 is the condition of critical coupling,
a > 1 overcoupling and a < 1 undercoupling.

The coupling between modes in our equations is
quite complicated and generally the coupled oscillator
analogy is not exact since we are dealing with eigen-
value:equations. However, the analogy does make
plausible some of the dispersion curves that arise.

The dispersion curves for the E modes for different
values of wp are shown in Figures 8.4-8.8. Note the
double resonances that appear near the cyclotron fre-

quency in some of the curves. Since the second harmonie,

€5, is excited quite strongly near the cyeclotron fre-
quency it appears that the presence of this mode gives
use to a double rescnance similar to a = 2 in Fig. 8.10,

The magnitudes of the higher Fourier coefficients
(with a, = 1) are plotted on a semi-log scale with each
dispersion curve. In each case it is noted that the
higher harmonics are most strongly excited near cyclo-
tron resonance and are excited somewhat less strongly
at plasma resonance. In all cases coupling virtually
vanishes near cutoff. This must be the case since it
was seen previously (Chapter 5) that the equations

decouple when B = 0.
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An interesting set of curves are obtained when the
cyclotron frequency is smaller than cutoff. For an
empty waveguide pfopagation below cutoff is, of course,
not possible. 1In all cases it is seen that a wave can
propagate below the plasma frequency, although in
practice the wave may be highly damped.

The dispersion relations for wp = -1.5 w, has been
plotted for three values of~30llision-frequendy and are
shown in Figures {.Ta and 8.8.The effect of increasing
collisions is to considerably lessen the cyclotron
resonance, and to a lesser extent decrease magnitude of
thwepadzioma resonance.

Note also the similarity between the dispersion
curves for the warm plasma model and those presented
for the cold plasma model in Chapter 2. Of course, the
behavior of 8 vs w for the two models should not be
expected to differ greatly since fhe equations obtained
in Chapter 6 were very similar to those used in Chapter
to describe the cold plasma.

Once the dispersion characteristics of a particular
mode have been found the functional form of the e, hz
and ¢ forms can be obtained by computing these fields

from their spectral representations. It would be far to

space~consuming to plot the field structures for all of
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the modes so only the e, and h, fields for the hybrid-E

mode with wp = 1.5 and v =.05 w_ have been plotted. The

0
magnitudes of these fields as a function of frequency is
shown in Pigures 8. f§¢ and &i#a. The magnitude of the
pressure mode has not been plotted since the functional
fdrm of this field is rather difficult to plot. Instead
a table of values of the components of the normalized
pressure is included below. To understand this table

remember that, for the hybrid-E modes, ¢ was separated

into two terms as expressed by (6.5). These are

¢ =4, + ¢ (a)
| (8.13)
where
a a
= 31 32
¢1 a 2 ez + a 2 hz (b)
33 33

and ¢' is a solution of (6.6a). The solution of 6.6a)
was given by (6.22a) and in this case is well approxi=-
mated by (6.23). i.e.,

cos n;+sin n1+j(cos n,-sin nl)

cos n -sin no-j(cos no+sin no)

¢'(I’) = Ae E'(r-a){ }

(8.14)
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o] Maximum value
w/ogg of ¢,(r)
A= TﬁiT ny g
2.0 | 1.7x10% | 2.16x10° | 4.1x103 7.6x10f"
1.8 | 1.61x10°% | 1.56x10° | 5.5x103 | 1.1x1073
1.53 | 5.0x10> | 1.9x10% | 4.5x10% | 2.6x10"2
1.36 | 2.1x10%° | 6.7x103 | 1.27x10° | 5.8x103
1.0 4.5 4.6x103 | 2.0x10° | 1.22x10~"
0.8 | 2.5x10Y | s5.1x103 | 2.4x10° | 1.3x1073
10,4 5.8 6.7x103 | 2.6x10° | 9.4x1073
0.2 |2.0x100 |1.2x10" | 2.6x10° | 2.9x1073

Table 8.1 - Components of ¢ as a function of Fre-
quency for the Hybrid-E Modes with
(I)B = -155 wCE and v = 0005 wo
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where we have defined A = THET’ n, = Reallhplr,

n, = Reallhp|a, and §' = Imaglhplo a is defined by (6.22b).
Evidently, ¢' is a.function which behaves as a damped

sinusoid. Thus a good idea of its form can be obtained

by tabulating the magnitudes of the damping factor,

g' = Imag|hp|, the oscillatory factor, Real Ihpl and the

amplitude, A. The values of these factors along with the

magnitude of ¢, as a function of radjus for various

values of the normalized frequency are tabulated in

Table 8.1. Note in particular that the magnitude of ¢'

is much larger than the magnitude of ¢l. This was the

initial assumption used in deriving equations for the

hybrid E and H modes in Chapter 6.

8.3 Dispersion Curves for the Hybrid-H and Hybrid-
pressure Modes

To complete this chapter some dispersion curves for
the hybrid-H and p modes are now shown. These curves
were obtained by the procedure outlined in Section 8.1
and essentially the same approximations were used to
simplify the sums. Equation (7.24) was used to find
the coefficients of h, and (7.28) was used to find ¢..

Consider the curves shown in Figures 8.11 and 8.12,
These curves were obtained from (7.24) by the iterative
technique discussed previously. Note that these curves

behave in a similar manner to the corresponding curves
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obtained for the cold plasma model and shown in Figures
2.4 and 2.5. In particular, the cutoff is increased as
wg increases and no resonant behavior occurs near the
plasma frequency.

Finally, consider the dispersion curves for the
pressure modes, Figures 8.13 and 8.14. Note that the
scale has been changed here.

The pressure modes, of course, are not present when
the cold plasma model is used to describe the plasma.
They are introduced only if the electron gas is aSSumed
to be compressible. The extent to which their neglect
effects the solutions of the electromagneticumodes was

discussed in Chapter 6 where it was seen that inclusion

of the pressure effectively changed the boundary conditions

on the cold plasma equations.

The other way in which inclusion of compressibility
changes the solutions 1is, of course, the addition of the
pressure mode to the solutions. In any practical
experiment the question of whether a pressure mode can
be seen depends to a large extent on the attenuation of
the mode. Note that, for the values of parameters chosen
here, the imaginary part of B8 is always quite large. The
inclusion of collisions is seen to smooth any resonant

behavior around the cyclotron frequency to such an extent
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that the resonance is almost completely obliterated.
The more important point is that the attenuation 1is
so large that a pressure wave with the dispersion
characteristics shown above could probably not be

observed in any experiment.

B N o N N N G G N am
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CHAPTER IX
CONCLUSIONS

9.1 Summary of the Work

The main obJective of this work was to obtain solu-
tions for the normal modes of propagation in a warm
bounded plasma. In Chapters 3 and 4 it was shown that,
for the cases of a drifting uniform plasma and a
stationary, non-uniform plasma, all the fields could be

found in terms of the axial electric and magnetic fields

and the pressure. These fields were called the potentials

for the problem.

Generally it was found that the coupled differential
equations satisfied by the potentials were too difficult
to be solved unless it was assumed that the plasma was
stationary and uniform. This assumption was therefore
made and, in this 1limit, the coupled potential equations
reduced to the coupled Helmholtz equations discussed ty
Sancer[lu]. Before these equations could be solvea it
was necessary to find appropriate boundary conditions

for e hz and ¢. These were derived, in Chapter 5,

Z’
from the physical requirements that the tangential
electric fields and normal component of the velocity
vanish at the boundary. In the general case it was

found that the boundary condltions on hZ and ¢ were

147
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coupled, as shown by (5.4). However, if we restricted
the analysis to modes having no tangential variations

the boundary conditions on hz and ¢ decouple and simplify
the analysis considerably.

The solutions for the potentials was then considered
in Chapter 6. The analysis was temporarily restricted
to two of the three possible modes, those for which IBl
was much less than w/u. With this assumption it was
shown that the coupled equations could be greatly
simplified and, in fact, were.very similar tovthe equa-
tions that describe the potentiai Qhen the cold plasma
model is used to describe the plasma. It was for this
reason that the cold plasma equations were presented in
Chapter 2. With the equations in a form so close to
the cold plasma equations it was relatively easy to
examine the relation between the cold plasma equations
and the warm plasma equations in the zero temperature
limit. We concluded that the solutions were not identical
in the 1limit T » 0.

With the number of coupled Helmholz equations reduced
from three to two we could have proceeded as in Chapter 2
to obtain solutions by diagonalizing the equations and
obtainingtsolutions to the complicated boundary equations.

Instead, an iterative method of solution was developed
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to obtain an exact solution of the problem in terms of
an infinite set of equations for the Fourier coefficients
of the fields. This method was develoﬁed in Chapter 7
for solutions of the hybrid-E, H and p modes, where the
designation E, H and p indicate that the hybrid modes
reduce to the pure modes in the high frequency or small
coupling 1imit. Chapter 7 was concluded with a brief
discussion of perturbation solutions for the problem.

In Chapter 8 a method for solving the infinite set
of equations for the Fourier coefficients was discussed.

was written

x "
AN e il [ I 2

A computer program, presented in Appendix C
to carry out this procedure and was found to work very
well, except when the frequency was very near the
cyclotron freguency. A number of dispersion curves

was then shown and the field structure of the potential

was presented for one value of parameters,

9.2 Discussion of the Results

Probably the most interesting and useful develop-
ment in this work is the reduction of the complicated
warm plasma equations to a simpler set of equations
very similar in form to those used in the cold plasma
analysis. With the solutions to the problem available
it is possible to reevaluate the assumptions that were

made in Chapter 6 when the reduced equations were derived.
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These were that |8| should be much less than h Ky and
that e, and hz were very accurately represented by the
first few terms in their spectral representations. An
examination of the dispersion curves and magnitude of
the fields shows that this is indeed the case.

In retrospect it should come as no surprise that
such a reduction of the equations is possible if it is
remembered that the linearized fluid equations used to
describe the warm plasma included just an additional
moment of the Boltzman equation. However, at the
beginning of this work a method of realizing this
reduction was by no means obvious.

In the course of this work a number of approxima-
tions and assumptions were made in order to obtain a set
of equations that could be solved. The restriction of
the solutions to modes having no tangential variation
was not actually necessary, but was done to simplify the
analysis. The restriction that the plasma be uniform
and stationary was much more essential since without
this restriction the differential equations become much
more complicated than the Helmholz equations we had to
solve. In some cases, where drifts or non-uniformities

are not large, it should be expected that solutions may
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omission simplifies the problem. Often it is possible
to estimate the magnitude of the error involved in
dropping terms and in these cases one may justify, a
pomtdri, the ortginal’equations.. (A very complete
treatment of the derivation of various moments of the
Boltzman equation and the approximations iﬁherent in
their truncation can be fognd in Tanenbaum, Ref..1¥}
In the final analysis, the degree to which a parti-

cular mbdel accurately describes the physical phenomena

must be determined by experiment. Unfortunately many of

the wave propagation experiments which have been per-
formed have been in geometries which are not easily
analyzed and experimental data pertaining to this work
is not available. One very sﬁccessful application of
the warm, uniform, isotropic plasma equations has
recently been published by Kolettis. He finds that, by
defining an effective plasma frequency for a non- .
uniform plasma column, the theory and experiment agree

very closely. It is expected that the same procedure

could be applied to our results. Note that, in order to

compare experimental results with the theoretical
analysis, it is necessary to insure that the proper
mode is excited. In particular the dispersion curves

for modes having no angular variation must be excited.
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Finally, it is noted that the equations we have
used here may apply to a wider class of physical
phenomena than the gaseous plasma. The equations some-
times used to describe waves in solid state plasmas are
very similar to those used here and experimentation in

this field may be very rewarding.[3D]
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APPENDIX A

GREEN'S FUNCTIONS AND COUPLED MODE THEORY

A.1 Green's Functions

In this appendix several general relations which are useful in
obtaining solutions to coupled differential equations will be derived
by considering solutions in terms of appropriate Green's functions.
First the solution of one dimensional inhomogeneous Sturm-Liouville

2
equations will be rev:i.ewed.(3 )

The most general inhomogeneous equation we will consider is of

the form

Lo E+ e + 2260 = ~o(R)E(x) (A.1)

Let G(x|xo) be a Green's function which is a solution of

a , d¢ 2 3 =
P&t (@ + 2%0)G = —G(X—xo) (A.2)

Solutions to (A.1l) can be constructed from the Green's functions
as follows. Replace x by X, , multiply (A.1) by G , (A.2) by

¥ , subtract and integrate to obtain
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a
¥(x) = f o(xo)G(xolx)f(xo)de
o

(A.3)
+ [6(x_[0p(x ) & _y(x )p(x ) L
o (o} dxo o] o] dxo 0
The boundary conditions on G must be chosen to eliminate any

unknown quantities in the evaluation of (A.3) . Suitable conditions

for different boundary conditions on v ave-discussed in Morse and

b}
Feshbach.

A.2 The Scalar Product

The scalar product between functions satisfying Sturm-Liouvilie
equations will be used frequently in the text. It is evaluated here

for reference.

Consider the scalar product of two functions, Wn and @m

which satisfy

d dWn
= p =4 2 =
& PE& tlatajoly =0  (a)
(A.L)
4 d¢m )
FPa tlatyile =0 (b)
The scalar product is defined to be
a, |
<Y, 9 >= Sov¥oedx (A.5)
Sl
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Here the bracket (or bra and ket) notation is used to signify the

scalar product, after Friedman(23) .

Conbining (A.4) as before, and integrating we obtain;

ay de_ 22

2_ 2 R ¢ ., =
(A2- ¥2)/ o ¥ 0 dx + P & = Y & ]a 0 (A.6)
1

It is convenient to introduce a notation to signify the

evaluation of the boundary terms. Define

ay_ de_ a
(sty) = [P0 35~ Yy ) (a.7)
a
1
Thus
(v , o)
<Y ,0 >= ~n_m (A.8)
n m Y2 - 12
m n

A.3 Coupled Wave Solutions

The above derivations are quite well known. Now consider some

relations which are of particular value in obtaining solutions to

coupled equations. First suppose that the function f(x) appearing

in (A.1) is a solution of a homogeneous Sturm-Liouville equation.

ar

a ., _o 2 -
wPax T (@tor)df, =0 (A.9)

In this case the integral in (A.3) can be evaluated by
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combining (A.2) and (A.9) .
a £ (x) , ar a
= 0 -1 r °o_ o 4G _

él c(xo)G(xolx)fo(xO)de Y x2-x2Lp(G & £, dxo)]a (A.10)

0 0 1

fo(X) 1

Ceov(x) = - (fO,G) + (v, G) (A.11)

2_32 242
)\O?\ )\OA

Next, suppose that f(x) in equation (A.1) can be expressed

as a Fourier series of functions satisfying (A.4) .

f(x) = L a. ¥, (A.12)
n

Assuming that the series (A.12) is uniformly convergent a

similar evaluation of the integral can be made. The result is

ay a,
w=znn_z e}

232 2432
n)\nk nAnX

(£, + (¥,6) (4.13)
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APPENDIX B

EIGENFUNCTION AND BOUNDARY VALUE SOLUTION FOR CIRCULAR GEOMEIRY

For reference the elgenvalue solutions and boundary value

solutions for the circular waveguide are tabulated below. Also the

normalization and scalar products are tabulated.

B.1 Eigenvalue Solutions

The functions e, and wo that are used in Chapter 7 to

expand the potential field are solutions of

d d

—— p = 2 = =
{Eragtrre, =0, en(a) 0 (a)
(B.1)
aw
d d 2 m
{=r=+y2rw =0, =—| =0 (b)
dr " dr 'm m ar ' g
The normallized eigenmodes are
J (xr)
o''n
e = (a)
n Nn
where A = pon/a (b) (B.2)
a2J2(x_a)
2 o1 D
and N2 5 (e)
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W= 2955?31 (a)
where y = p, /a (b) (B.3)
and NZ = ﬂ‘;ﬁ) (c)

For circular geometry the weighting factor used in Appendix A
in the discussion of the Sturm-Liouville equation is the radial

coordinate, r . The boundary quantity thus is defined as,

() &7 (v r) a
g - m
(en,wm) - [ N N ar ]
n m 0
_ -AnaJo(Yma)Jl(Ana)
- N N
n m
(6w ) = = 2y Jolya) I, a)
L]
n®'m a [J (v al 17,3 2) |
2
D < URY VY ‘
(e oWy) = + —= (-1)7(-1) (B.4)

In the above derivation the normalization factors, Nn and Nm

defined in (B.2) and (B.3) have been used.

The scalar product is defined as

a I’JO(Xn)JO(Ym)dP‘

Y (B.5)
n m

<e W >=[
m
n o
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B.2 Boundary Value Solutions

It is of interest to exhibit solutions to the equation

%;r%«*qzr‘i"—'o (a)
(B.6)

day
—l = q (b)
dr a
The solution is,

=aJ (ar)
¥(r) = m (B.7)

i
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APPENDIX C

H

COMPUTER PROGRAM FOR COMPUTING THE
DISPERSION CURVES FOR THE WARM PLASMA

The following is an abbre&iated computer program
(for carrying out the Feenberg iteration procedure)
written 1n'ALGOL°* The only deviation from standard
ALGOL is the use of complex variables where necessary.
The program is separatéd into two parts, procedures and
the program body. It is felt that the program is fairly
self explanatory if reference is made to the explanation

of the iteration procedure given in Chapter 8. A brie

iy

explanation of the meaning of the procedures will be

given to aid the reader.

Procedure Function

LN1(N1) Computes Ap. The first 9 eigen-
values of Jo are read into storage

L2(N2) Computes xnz

G2(M2) Computes ymzo The first 9 eigen-
values of J; are stored.

OD(N2) Computes (~1)01

BNDRY(NM, SL) Computes (en,ws)

*
An excellent treatment of the use of ALGOL adequate to

acquaint the reader with the language can be found in
McCracken, Ref. 29.



Procedure
EDOT(N,M)
S1EH(NM,SL,SKP)

S2EH(B02,NM, SL, SKP)

SUM3(M,J)
VCALC(B0O2,NM, SL,SKP)

QNM(BO2 ,NM, SKP)

FNBRG (B2,0DR)
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Function
Computes (e ,W )

Evaluates the first sum appearing
in (7.14) or (7.23)

Evaluates the second sums appear-
ing in (7.14) or (7.23)

Evaluates the sum in (7.29)

Computes the coefficient an
or P! in Chapter 8

Computes the coefficient Qn in
Chapter 8

Computes 82 by the Feenberg
iteration as presented in Chapter 8.
ODR selects the order of the itera-
tion. This procedure can be used
to iterate on 8.

SRT,XFORM and RFORM are procedures written to compute
the complex square root, convert complex numbers
to exponential form and take the real part of a
complex number, respectively. They have not been

included.

The values of the necessary plasma parameters are

computed in the program body. When possible, variables

have been chosen to correspond to those used in the text.

For example LO -+ zo, KH + KH, etc.

increases greatly as higher order iterations are employed

the first two values of B8, B_l and Bo are compared. If

these differ appreciably B is computed, etc. If this

procedure does not converge the Poisson iteration is

applied. In this case an indicator, ROOTEST, is computed

Since computation time
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in FNBRG and is set to 1 if the procedure converges and
to 0 if it does not. In practice it was necessary to em-
ploy very small incremental steps when searching for
roots near w = Wpe CYL is an indicator which is set to

1l for the circular waveguide computation. H is an
indicator which is set to 1 when computing the hybrid-H
modes and 0 when computing the-hybrid—E modes. PRES is

set to 1 when the hybrid-p modes are computed.
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PROCEDURES

REAL PROCEDURE LN1(Nl1) ¢ INTEGER N1 $

BEGIN REAL LA $ LOCAL LABEL OUT $

IF CYL EQL O THEN BEGIN LA={N1%*PI)/(2%A) $ GO TO OUT $
END $ IF N1 LEQ 9 THEN BEGIN LA=LAMBDA(N1) $

GO TO OUT $ END $ ©LA={ (4%N1-1)%*PI )/(L*A) $

OUT.. LNl= LA $ END OF EIGENVALUE LAMBDA $

REAL PROCEDURE L2(N1) $ INTEGER N1 $ BEGIN REAL LA $
LA= LN1(N1) $ ©L2= LA*LA $
END OF EIGENVALUE LAMBDA SQUARED $

REAL PROCEDURE G2(M1) $ INTEGER M1 $

BEGIN REAL GA $ LOCAL LABEL OUT $

IF CYL EQL O THEN BEGI{: GA=M1¥*PI/A $ GO TO OUT $

END $ IF M1 LEQ 9 THEN BEGIN GA=GAMMA(M1l) $ GO TO OUT $
END $ .GA= ( (4¥M1+1)*PI)/(4%*A) $

OUT.. G2=GA*GA ¢ END OF EIGENVALUE GAMMA SQUARED $

INTEGER PROCEDURE OD(N1) ¢ INTEGER N¥% § BEGIN REAL

RL $ INTEGER IN, IND $ RL= IF (H+CYL) EQL O THEN
(N141)/4 ELSE N1/2 $ 1IN=RL $ IND= IF ABS(RL-IN) GTR
0.25 THEN -1 ELSE 1 $ OD=IND $ END OF SIGN INDICATOR $

REAL PROCEDURE BNDRY(NM,SL) $ INTEGER NM, SL §$
BEGIN REAL TEM $ TEM= IF NM EQL SL THEN 1.0 ELSE
OD(NM)*0OD(SL) $ BNDRY= (2*LN1(NM)/A)*TEM $

END OF BOUNDARY PRODUCT (E,Ww) ¥ ¥ #® §

REAL PROCEDURE EDOTW(N,M) ¢ INTEGER N,M $ BEGIN
REAL TEM ¢ TEM= BNDRY(N,M) $ EDOTW= TEM/( G2(M)-L2(N) ) $
END OF SCALAR PRODUCT <E,W> OR E DOT W * ® % §

COMPLEX PROCEDURE S1EH(NM,SL,SKP) $ INTEGER NM,SL,SKP $
BEGIN COMPLEX TEM1, TEM2, SUM1l, LG2 $

INTEGER K, K1 $ LOCAL LABEL SKIPSET $ OWN COMPLEX
ARRAY TEM(0..15) $ OWN INTEGER INT, INC, FNL $

IF SUMSIZE EQL 1 THEN GO TO SKIPSET $ IF H EQL 0 THEN
BEGIN INT=CYL $ INC=1] $ FNL= IF NM GEQ SL

THEN NM+6 ELSE SL+6 $ END $ IF H EQL 1 THEN BEGIN
INT=1 §¢ INC= 2-CYL $ FNL= IF NM GEQ SL

THEN NM+(2-CYL)*6 ELSE SL+{2-CYL)%*6 §$ END $

SKIPSET.. FOR K=(INT,INC,FNL) DO BEGIN IF SKP EQL O THEN
BEGIN LG2= IF H EQL O THEN G2(K)*KH ELSE L2(K)®*KH $
TEM(K)= 1.0/(-LG2+BEH) $ END $
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TEM1= IF H EQL 0 THEN EDOTW(SL,K)*EDOTW(NM,K) ELSE
EDOTW(K,SL)®*( EDOTW(K,NM)) $ TEM2= TEM(K)*TEM1 $
SUM1= IF K EQL O THEN TEM2/2.0 ELSE SUM1+TEM2 $

IF SUMSIZE EQL O THEN BEGIN IF RFORM(TEM2) LEQ
0.0050*RFORM(SUM1) THEN BEGIN IF K1 EQL O THEN BEGIN
Kl=1 $§ FNL= K+2 $§ END $ END $ END §$ END $
S1EH= SUM1 $ END OF FIRST SUM FOR BOTH E AND H
MODES # # ¢

COMPLEX PROCEDURE S2EH(B0O2,NM,SL,SKP) $ COMPLEX B02 $
INTEGER NM,SL,SKP $ BEGIN COMPLEX TEM1, TEM2, LG2, SUM2 $
INTEGER K,K1 $ LOCAL LABEL SKIPSET $ OWN COMPLEX

ARRAY TEM(0..15) $ OWN INTEGER INT, INC, FNL $

IF SUMSIZE EQL 1 THEN GO TO SKIPSET $

INT=1 $ INC=1 $ FNL=10 $ SKIPSET.. FOR

K=(INT,INC,FNL) DO BEGIN IF SKP EQL O THEN BEGIN

LG2= IF H EQL 0 THEN G2(K) ELSE L2(K)*KH $ TEM(K)= IF

H EQL 0 THEN KH¥*( (-LG2+KOKP-BO2/(-LG2*KH+BEH))

ELSE 1.0/(-LG2+4BEH) $ END $

TEMl= IF H EQL 0 THEN BNDRY(SL,K)*EDOTW(NM,K}ELSE
BNDRY({K,NM)*EDOTW{K,SL)} $ TEM2= TEM{(K)*TEM1 ¢

SUM2= SUM2+TEM2 $

IF SUMSIZE EQL O THEN BEGIN IF RFORM(TEM2) LEQ
0.0050*RFORM(SUM2) THEN BEGIN IF K1 EQL 0 THEN BEGIN

Kl=1 $§ FNL= K+1 ¢ END $ END $ END $ END $

S2EH= SUM2 $ END OF SECOND SUM FOR BOTH E AND H MODES * # $

REAL PROCEDURE SUM3(M,J) $ INTEGER M,J $

BEGIN REAL SUM, TEM $ INTEGER FNL, K $

FNL= IF M GTR J THEN M+5 ELSE J+5 $

FOR K=(1,1,FNL) DO BEGIN TEM=EDOTW(K,J ) *EDOTW(K,M) $
SUM= SUM+TEM §$ END $ SUM3= SUM $ END OF
SUMMATION FOR THE PERTURBED PRESSURE MODES * # §

COMPLEX PROCEDURE VCALC(B0O2,NM,SL,SKP) $

COMPLEX BO2 $ INTEGER NM, SL, SKP $ BEGIN COMPLEX
TEM, KC2, DNM $ OWN INTEGER MN,LS $

OWN COMPLEX D12D21, SM1, SM2, D12D6, B12B6 $

LOCAL LABEL SAMEB2, PCALC, OUT $ 1IF NM EQL SL THEN
MN=LS=50 $ IF PRES EQL 1 THEN GO TO PCALC $

IF SKP NEQ 0 THEN GO TO SAMEB2 $

BEH= IF H EQL O THEN KO2%(KPKH-LH)-BO2*KH ELSE
KOPH-BO2* (KH+4LH) $ KC2=K02-B02 §$ D12D21=B12B21%B02 $
IF H EQL 1 THEN BEGIN DNM=KH*XC2-LO2%*B02 $

B12B6= B12B6P/DNM $ END $ IF H EQL O THEN

B12B6= L02/KC2 $ D12D6= B12B6*B02 $

SAMEB2.. IF MN NEQ NM AND L& NEQ SL THEN
SM1=S1EH(NM,SL,SKP) $ IF COLDTEST EQL 0 THEN

SM2= S2EH(B02,NM,SL,SKP) $ LS=NM $ MN=SL $
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TEM= IF SKP LEQ 1 THEN B12B21¥*SM1+B12B6%SM2 ELSE
D12D21%SM14D12D6%SM2 $ GO TO OUT $

PCALC.. TEM= -LH*SUM3(NM,SL) $ OUT.. VCALC= TEM $
END OF COEFFICIENT V SUB NS OR SUB ML * ¥ # g

COMPLEX PROCEDURE QNM(B0O2,NM,SKP) $ COMPLEX B02 $
INTEGER NM, SKP $ BEGIN COMPLEX TEM $

OWN COMPLEX D11, D22 $ LOCAL LABEL PCALC, OUT $

IF PRES EQL 1 THEN GO TO PCALC $ 1IF SKP EQL 0 THEN BEGIN
IF H EQL O THEN D1l= KOPH-BO2*(KH+LH) $ IF H EQL 1 THEN
D22= (XOPH-KO2®*LH) ~BO2*¥KH $ END $

TEM= IF H EQL 0 THEN D11-L2(NM)¥KH ELSE D22.-G2(NM)*KH $

GO TO OUT §$ PCALC..TEM=KH-KB*¥B02 $ OUT.. QNM=TEM $

END OF COEFFICIENT QNM IN THE PLASMA DISPERSION RELATION $

COMPLEX PROCEDURE FNBRG(B2,0DR) $ COMPLEX B2 $

INTEGER ODR $ BEGIN COMPLEX DNMQ, NUMP, DNMP, BO2,

BT2, DENOM $ OWN COMPLEX NUM, DNM1 $

INTEGER SP1, SP2, STOP1 $ LOCAL LABEL 0Z, ALI $

IF PRES EQL O THEN BEGIN IF ODR EQL -1 THEN BEGIN

NUM= IF H EQL O THEN (KOKP-L2(N))¥KH

ELSE KO02* (KPKH-LH)-G2(N)*KH $

DNM1= IF H EQL O THEN KH+LH ELSE KH $ END $ END $

IF PRES EQL 1 THEN BEGIN NUM= KH $ DENOM=KB $ END $
B02= BT2= B2 §$ SPl= Sp2=0 $

IF PRES EQL 1 THEN BEGIN B02=B02/HO2 $ BT2=BT2/H02 $ END $
STOP1=5 $ IF ODR EQL 2 THEN STOPl=1 $

IF PRES EQL 1 AND ODR LEQ 1 THEN STOP1=0 §$

IF ITERATE EQL 0 THEN STOP1=0 $ ROOTEST=1 $

AP= AQ= V(N,N)= 0.0 $ SUMSIZE=0 $

0Z.. SP2=0 $ 1IF SP1 GTR STOP1 THEN GO TO ALI $

IF ODR GEQ 0 THEN V(N,N)= VCALC(BO2,N,N,0) $

SUMSIZE=1 $ 1IF ODR GEQ 1 THEN BEGIN Ql(P)= QNM(B02,P,0) $
V(P,P)=VCALC(BO2,P,P,2) $ V(N,P)=VCALC(BO2,N,P,1)
V(P,N)= VCALC(B0O2,P,N,2) $ IF ODR EQL 1 THEN

AP= V(P,N)/(Q1L(P)-V(P,P)) $ END $

IF ODR GEQ 2 THEN BEGIN Q1(Q)= QNM(B02,Q,1) $

vV(Q,Q)= VCALC(B02,Q,Q,2) $ V(N,Q) = VCALC(BO2,N,Q,1) $
V(Q,N)= VCALC(B02,Q,N,2) $ V(P,Q) = VCALC(B02,P,Q,z) $
V(Q,P)= VCALC(B02,Q,P,2) $ DNMQ= Q1(Q) -V(Q,Q) $

NUMP= V(P,N) +( V(P,Q)*V(Q,N))/DNMQ $ DNMP= Q1(P)-V{(P,P)-
(V(P,Q)*¥V(Q,P))/DNMQ $ AP= NUMP/DNMP $

AQ=(V(Q,N) + V(Q,P)*AP)/DNMQ $ END $ 1IF PRES EQL O
THEN DENOM=DNM1+V(N,N)+V(N,P)*¥AP+V(N N)*AQ $ IF PRES
EQL 1 THEN NUM=NUM-V(N,N)-V(N,P)*mP-V(N,Q)*AC $

B02= NUM/DENOM $ IF ODR EQL -1 THEN GO TO ALI $

IF PRES EQL 1 THEN GO TO ALI $ 1IF ITERATE EQL 1 THEN
BEGIN IF ODR GRQ 1 THEN WRITE(B02) $

IF ODR EQL 5 THEN GO TO ALI $ :
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IF ABS(REAL(B02-BT2)) GTR 0.021%*ABS(REAL(BT2)) THEN
SP2=1 §$ IF ABS(IMAG(B02-BT2)) GTR 0.021*ABS(IMAG(BT2))
THEN SP2=1 $ IF SP2 EQL 1 THEN BEGIN SP1=SP1+1 $

BT2= B02 $ GO TO 0Z ¢ END $

ALI.. FNBRG= IF PRES EQL 0 THEN B02 ELSE BO2%H02 $

IF ITERATE EQL 1 AND SPl1 GTR STOP1 THEN ROOTEST=0 $

END OF FFENBERG ITERATION OF ORDER 0 THRU 2 FOR BETA
SQUARED $
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PROGRAM BODY

C= 3&%8 §$ C2=C*C §$ PI=3.141590 $ P102= 1.570796 $
U=3%5 §$ U2=U%U $ A= IF CYL EQL 0 THEN 0.010 ELSE
(0.04810)/PI $ A2=A*A $ J= <0,1> $

WN= A/1.41416 $ FOR N=(1,1,9) DO BEGIN READ(Q4,Q5,Q6,Q7) $
LAMBDA(N)=Q4/A $ GAMMA(N)= QS5/A $ NORMN(N)=WN¥*Qb
NORMM(N)= WN*Q7 $ END $ N=S=1 $

FOR S=(4.-1,0) DO BEGIN IF S EQL O THEN Q4=Q5=1.0 $

FOR N=(1.1°3) DO BEGIN IF S NEQ O THEN READ (Q4,Q5) $
JON(N,S)=Q4/NORMN(N) $ JOM(N,S)= Q5/NORMM(N) $ END $
END $ FOR N=(1.1'3) DO BEGIN

DJON(N)= ((1.41416%LAMBDA(N))/A)*(D(N) $ END $

N=S=1 §$ WO= 2&10 $ W02= WO*WO $ WN= 0.050%W0 $
WC2= L2(N)¥C2+W02 $ WCE=SQRT(WC2) $ IF H EQL 1 THEN
BEGIN WC2= G2(N)*C2+W02 $ WCl= SQRT(WC2) $ END $
WB= -150*WCE §$ WB2= WB*WB $

WCEN= IF H EQL O THEN 1.0 ELSE WC1/WCE $ NORM= WCHN $
IF H EQL 0 THEN P= IF N EQL 1 THEN (3-CYL) ELSE
N-(2-CYL) $ IF H EQL 1 THEN BEGIN IF N EQL 1 THEN

P= IF CYL EQL 0 THEN 0 ELSE 2 ¢ IF N NEQ 1THEN

P=n-1 $ END $ IF H EQL 0 THEN Q= IF N EQL 1

THEN (5-2%*CYL) ELSE N+(2-CYL) ¢ 1IF H EQL 1 THEN

Q= IF N EQL 1 THEN 3 ELSE N+1 $ START= 2.20 $
STP=STP1=STP2=-0.10 $ STOP= 0.050 $ STP2=STP/4.0 $
FOR T=(START,STP,STOP) DO BEGIN W=T¥WC $ W2=W*W §$
STP= STP1 $ IF ABS(T-WHN) LSS0.21 THEN STP=STP2 $

IF ABS(T-WON) LSS 0.41 THEN STP=STP2 $

IF ABS(T-1.0)LSS 0,15 THEN STP- STP2 $ TN=T $

LO= WO/W $ L02=L O%L 0 $ LB=WB/W $ LB2=LB*LB $
LN=WN/W §$ EP=1-J%#LN § EP2-EP*EP $ LNU=1.0/EF $
LNU2=LNU®*LNU $ KP=1-LO2%LNU $ KB=1-LB2¥LNU2 $
KH=EP-L02-LB2*LNU §$ KH2= KH*KH ¢ RKH= REAL(KH) $

RKB= REAL(KB) $ KPKH= KP*KH $

KO= W/C $ KO02= KO*K0O '$ KOKP= KO2®*KP $ KOPH= KOKP*KH $
HO= W/U $ HO2= HO¥HO ¢$ LH= LO2%LB2*¥LNU2 $ B1l2B2]1=
(KO2#*LH*LO2)*KP $ B12B6P = LO2*LH*KO02%¥KH $ SUMSIZE=C $
IF PRES EQL 0 THEN BEGIN BC=FNBRG(BC,-1) $
WRITE(BC,SRT(BC,1), TN,-1,0,0,0,0,1) $ END $
B20=FNBRG(BC,0) $ WRITE(B20,SRT(B20,1),TN,0,0,0,0,0,
ROOTEST) $ B2l= IF ROOTEST EQL 0 THEN FNBRG(BC,1)

ELSE FNBRG(B20,1) $ IF ROOTEST EQL 0 THEN B21=FNBRG(BC1,1)%
BC1=B21 $ RAP=RFORM(AP! $ WRITE(B21,SRT(B21,%);
T™N,1,RAP,0,0,RO0TEST) $ IF ABS(REAL(B20-B21})
GTRO.09*ABS(REAL(B20)) THEN STi=1 $ IF ABS(IMAG(B20-B21))
GTR 0.09*ABS(IMAG(B20)) THEN STi=1 $

IF ST1 EQL 1THEN BEGIN B2Z2= IF RCOTEST EQL 0 THEN
FNBRG(B22,2) ELSE FNBRG(B21,2) $
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RAP=RFORM(AP) $ RAQ=RFORM(AQ) $
WRITE(B22,SRT(B22,1),TN,2,RAP,RAQ,ROOTEST)
ST1=0 $ END $ WRITE('1l') $

IF ST2 EQL O THEN B22=B21 $ ST2=1 $
ST1=0 $ QU4=ZFIELDS(B22) $

END $

END $

$
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